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Background Problem:

High energy consumption causes 
higher power bills, environmental 
harm, depletion of resources and 
infrastructure strain. 

Solution:

We use machine learning models to 
predict energy consumption trends, 
optimize usage, reduce costs, and 
support renewable energy 
integration.

Existing solution:

Lack accuracy, adapting to changes, 
addition of new data and flexibility.
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Data set 

American Electric power (AEP) 

produces energy throughout 

the United States which include 

Arkansas, Indiana, Kentucky, 

Louisiana, Michigan, Ohio, 

Oklahoma, Tennessee, Texas, 

Virginia and West Virginia.

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption 3



Visualization of the Data
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Analysis of data trends Start Date : 2017-01-01 
End Date: 2017-12-31
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Data Split

Splitting DATA 75/25

Training : Jan 2017 - Sept 2017

Testing: Oct 2017 - Dec 2017

Training Set Preview:
                      AEP_MW  hour  day_of_week  month
Datetime                                              
2017-01-01 00:00:00  13240.0     0            6      1
2017-01-01 01:00:00  12876.0     1            6      1
2017-01-01 02:00:00  12591.0     2            6      1
2017-01-01 03:00:00  12487.0     3            6      1
2017-01-01 04:00:00  12369.0     4            6      1

Testing Set Preview:
                      AEP_MW  hour  day_of_week  month
Datetime                                              
2017-10-01 00:00:00  10948.0     0            6     10
2017-10-01 01:00:00  10460.0     1            6     10
2017-10-01 02:00:00  10060.0     2            6     10
2017-10-01 03:00:00   9960.0     3            6     10
2017-10-01 04:00:00   9835.0     4            6     10
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Model Planning for LSTM and CNN

Model
Shape: [time steps, 

features]

Input: [24, 1]

Output: [Sample, 1]
MW per sequence
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Training and results Long Short-Term Memory 
(LSTM) model

Root Mean Squared Error:
343.2 MW

Train MSE:  133,963.17 MW^2 

Test MSE:  117,843.34 MW^2

Mean Absolute Percentage 
Error (MAPE): 1.574%

Model: "sequential"
_____________________________________________
____________________
 Layer (type)                Output Shape              Param #   
===================================================
==============
 lstm (LSTM)                 (None, 50)                10400     
                                                                 
 dense (Dense)               (None, 1)                 51        
                                                                 
===================================================
==============
Total params: 10451 (40.82 KB)
Trainable params: 10451 (40.82 KB)
Non-trainable params: 0 (0.00 Byte)
_____________________________________________
____________________
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Training and results convolutional neural network 
(CNN) model

Model: "sequential"
____________________________________________________________
_____
 Layer (type)                Output Shape              Param #   
=================================================================
 conv1d (Conv1D)             (None, 22, 64)            256       
                                                                 
 max_pooling1d (MaxPooling1  (None, 11, 64)            0         
 D)                                                              
                                                                 
 flatten (Flatten)           (None, 704)               0         
                                                                 
 dense (Dense)               (None, 50)                35250     
                                                                 
 dense_1 (Dense)             (None, 1)                 51        
                                                                 
=================================================================
Total params: 35557 (138.89 KB)
Trainable params: 35557 (138.89 KB)
Non-trainable params: 0 (0.00 Byte)
____________________________________________________________
_____

Root Mean Squared Error:
320.37 MW

Train MSE:  133,963.17 MW^2

Test MSE:  102,640.75 MW^2

Mean Absolute Percentage 
Error (MAPE): 1.741%
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Result analysis
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Result analysis
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Result analysis
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Transformer model

A Transformer model is a type of machine learning model that is especially good 

at understanding and generating sequences of data, like sentences. It uses a 

mechanism called "attention" to focus on different parts of the input data as 

needed, rather than processing it in order from start to finish.

● Encoder: Takes the input data (like a sentence in one language) and turns it into 

a set of features or representations.

● Decoder: Takes these features and generates the output data (like a translated 

sentence in another language).
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Model planning

Model
Shape: [time steps, 

features]

Input: [24, 1]

Output: [Sample, 1]

N-steps which in this case 
is 24

1 -Feature ‘AEP_MW’

Sample - Target value

1 - per sequence
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All 3 model planning

Transformer

Root Mean Squared Error:
57.61 MW

MSE:  3319.29 MW^2

Mean Absolute Percentage 
Error (MAPE): 0.0032%

LSTM 

Root Mean Squared Error:
343.2 MW

MSE:  117,843.34 MW^2

Mean Absolute Percentage 
Error (MAPE): 1.574%

CNN

Root Mean Squared Error:
320.37 MW

MSE:  102,640.75 MW^2

Mean Absolute 
Percentage Error (MAPE): 
1.741%
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Visualization of the Transformer model
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Visualization of the Transformer model
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Visualization of the Transformer model
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Visualization of all 3 models
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Visualization of all 3 models
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Visualization of all 3 models
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Conclusion 

Transformer models ability to use:

● Attention Mechanism

● Parallel processing 

● Scalability

● Flexibility

● Long-range Dependencies
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Future improvements

Future implementation of new and challenging dataset will make this 

project more advanced and improve the way we consume our energy.
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