Hashing 0000 Methods and Results

Acknowledgement 0

Efficient and Secure Hashing with SHA3

Memory, Throughput, and Security Software Optimizations on ARMv7m Cortex-M4

REU Scholar: Maggie Simmons REU Mentor: Dr. Reza

Home University: Rice University

August 1, 2024

Maggie Simmons Efficient and Secure Hashing with SHA3 I-SENSE REU

1 / 14

Motivation ●00

Hashin

Methods and Results

Acknowledgements 0

IoT Device Security

Challenges with IoT Security

- IoT Devices \rightarrow low computational resources
- Side-Channel Attacks: extract secrets through inadvertently leaked information
- Hardware solutions to cryptographic problems can be expensive

I-SENSE REU

 Motivation
 Hashing
 Methods and Results
 Acknowledgements
 References

 000
 0000
 0
 0
 0

Quantum Age: Coming Soon

"Now is the Time to Worry"

- 2*n* qubits to factor *n*-bit integer with Shor's algorithm
- In reality, many more qubits needed for error correction
- "We have time, but take action now"

Figure. 1: Predictions on Quantum Computing Advancements from Horizon Quantum Computing

I-SENSE REU

 Motivation
 Hashing
 Methods and Results

 00●
 0000
 0000

Acknowledgement

What is Post Quantum Cryptography?

Objective

• Secure systems against both quantum and classical computers, without changing existing communications protocols

Structure

• Cryptographic algorithms built from common set of building blocks called "primitives"

Right:

https://quantumai.google/discover/whatisqc

I-SENSE REU

Hashing ●000

An Overview of Hash Functions

イロト イヨト イヨト イヨト æ

I-SENSE REU 5 / 14 Efficient and Secure Hashing with SHA3

Maggie Simmons

Motivation	Hashing	Methods and Results	Acknowledgements	References
000	0●00	0000	O	
An Overview	of Hach Eurotions			

2

ヘロア ヘロア ヘビア ヘビア

trivation Hashing Methods and Results Acknowledgements

SHA3 Overview

SHA3 and Sponge Construction

- Built around Keccak, a permutation of the state [Div14]
- Introduction of Sponge Construction

SHA3 State

- Bitrate r + Capacity c = 1600
- Security

Level depends solely on c [PA11]

Figure. 2: Visualization of Sponge Construction

Motivation 000	Hashing 000●	Methods and Results 0000	Acknowledgements O	References
Applications	of SHA3			
The l	mportance of	SHA3 in PQC NIS	T Approved Algor	ithms

Maggie Simmons

Efficient and Secure Hashing with SHA3

Methods and Results 0000

Methods and Environment

Debugging

- Cpulator: Debugging and brainstorming for ARMv7m architectures
- OpenOCD with ARM Embedded Toolchain in Visual Studio Code

Main Environment

- Fedora 40 VM
- STM32F4Discovery: measuring clock cycles (see right)
- PQM4 and **XKCP** Cryptographic Libraries: benchmarking

SENSE REL

Hashing	Metho
	0000

ods and Results

Component Diagram of I-SENSE REU 2024 SHA3 Project

Maggie Simmons

Efficient and Secure Hashing with SHA3

10 / 14

ъ

Motivation	Hashing	Methods and Results	Acknowledgements	References
000	0000	○○●○	O	

SHA3 Assembly Implementations (Ongoing)

Keccak Assembly Implementation

- First attempt: 20% slower than PQM4 [Ado23], but significantly more readable
- Currently on second attempt - no bit interleaving and fast explicit rotations [Ber+12]
- Will hopefully result in 1-2% throughput increase
- Readability and ease of side-channel protections vastly improved

.global R	DL64							
.thumb_fur	nc							
type ROLE	54, %f	unct	ion					
.align								
ROL64:								
lsr	r2,	r0,	#8			@	32 - o	ffse
1s1	r0,	r0,	#24			@	offset	
orr	r0,	r0,	r1,	lsr	#8	@	32 - o	ffse
orr	r1,	r2,	r1,	1s1	#24	0	offset	
bx lr								

ROL32(); t1 = hal_get_time(); t_ROL32 += t1 - t0 - t_Overhead;

// 6008-ish total for the bit interleaving (1,500 for BL // 3008 for 64-bit rotate

Motivation	Hashing	Methods and Results	Acknowledgements	References
000	0000	000●	O	
Conclusion				

Future Exploration

- Formal verification and side-channel analysis of new SHA3 implementation
- Exploration in performance increase in context of larger algorithms
- Optimization on the newly released ARM M52 Cortex

Conclusions

- PQC algorithms increasingly important due to advancements in quantum computers
- Small optimizations to key primitives like SHA3 have huge effect on PQC implementations

LSENSE REL

イロト 不得 トイヨト イヨト

Motivation	Hashing	Methods and Results	Acknowledgements	References
000	0000	0000	●	
Acknowledgement	S			

Thanks to the I-SENSE Program for making this summer experience possible.

Special thanks to Dr. Reza, Maryam Taghi Zadeh, Merve Karabulut, and Daniel Owens for guiding me throughout the summer.

I-SENSE REU

otivation	Hashing 0000	Methods and Results 0000	Acknowledgements O	References
Refere	ences			
[PA11]	G. Bertoni, J. I reference. Roun http://keccal	Daemen, M. Peeters and G d 3 submission to NIST S k.noekeon.org/Keccak-	. Van Assche. The Kecca HA-3. 2011. URL: reference-3.0.pdf.	ık
[Ber+12]	Gianpiero Berto SHA-3 Compet	ni et al. <i>Keccak Implemen</i> ition, Round 3. SHA-3 Cou	<i>tation Overview</i> . Round 3 mpetition, 2012.	3 Report.
[Div14]	NIST Compute Hash and Exter Institute of Sta May 2014. URL 202/fips_202	r Security Division. SHA-3 adable-Output Functions. Indards and Technology, U. http://csrc.nist.gov _draft.pdf.	Standard: Permutation-L FIPS Publication 202. Na S. Department of Comm /publications/drafts	3ased tional erce, s/fips-
[Ado23]	Alexandre Ador In: <i>Cryptology</i>	nnicai. "An update on Kec Print Archive (2023).	ccak performance on ARN	∕lv7-M".

I-SENSE REU

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●