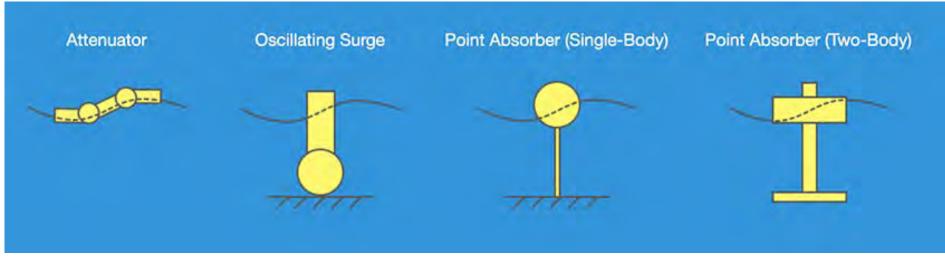


Full CAD assembly

Development and Testing of a Wave Powered Offshore Sensing System

Areesh Sobhani (Purdue University)
Samuel Loving (Florida Atlantic University)


Dr. James VanZwieten

80,000 TW/Year

~800,000,000,000,000 A19 10W LED Lightbulbs

Wave Energy Converters (WECs)

Types of Wave Energy Converters

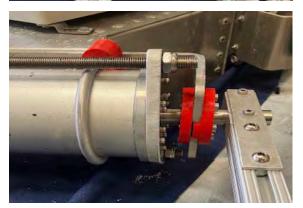
Knowledge and Development Gaps

Simulation Validation

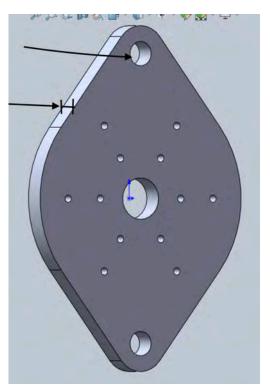
Validation of Electrical and Mechanical Power Ratings, as well as optimization of the two characteristics

Performance Characterization

Wave Characterization to Record Performance in different environmental circumstances


System Repair, Maintenance, and Upgrades

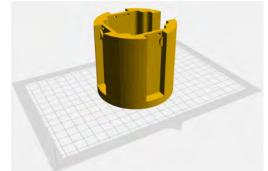
Improving the testbed to record reliable data


Mechanical Repairs (Motor Pods)

Original motor pod

Motor pod with replacement plate and shaft

Retention plate CAD model


Motor shaft CAD model

Mechanical Repairs & Upgrades (Motors)

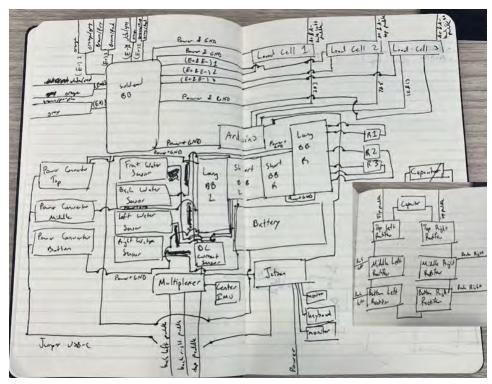
Original motor

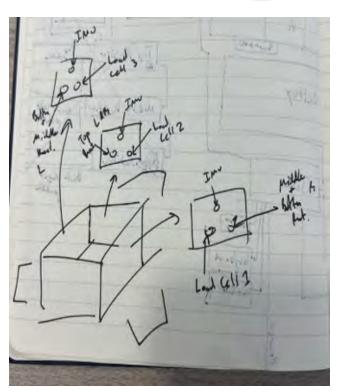
Replacement motor, fitted with a brace and connectors

Brace CAD model

Brace leak sensor slot

Mechanical Repairs (IMUs)


Original IMU unit

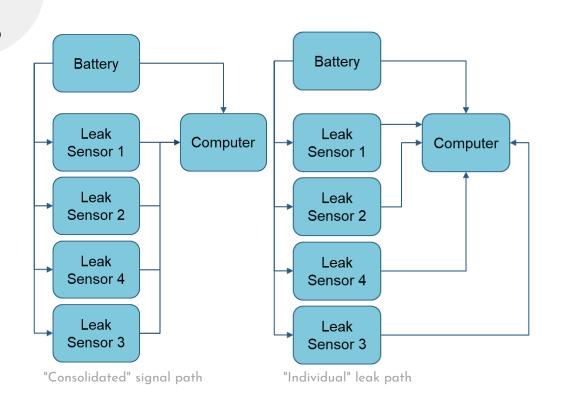


Replacement IMU unit set in resin

- Inertial Measurement Unit
- Provides angular velocity and elevation data
- Set in resin within enclosures to reduce potential water damage

Initial Electrical System Documentation

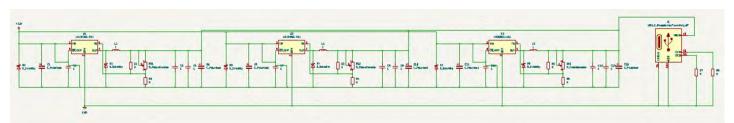



WEC wiring drawing

Signal-out reference drawing

Initial WEC System

Leak Sensing System

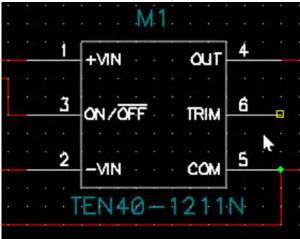


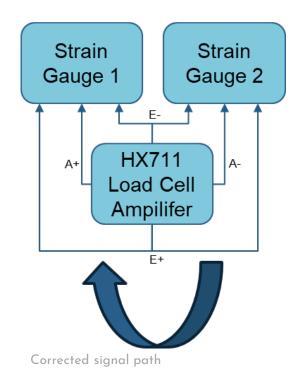
Jetson Nano Dev-Board Expansion Header

Alt Function	Linux(BCM)	Board Label			Board Label	Linux(BCM)	Alt Function
DAP4_DOUT	78(21)	D21	40	39	GND		
	77(20)	D20	38		D26-	12(26)	SPIZ_MOSI
UART2_CTS	51(16)	D16			D19	76(19)	DAPA_FS
		GND			D13	38(13)	GPID_PE6
LCD_BL_PWM	168(12)	D12			D6	200(6)	GPIO_P20
		GND			DS	149(5)	CAM_AF_EN
		01/ID_SC			D0/ID_50		
SPI1_CS1	20(7)	D7			GND		
SP(1_CS0)	19(8)	DS			D11	18(11)	SPIT_SCX
SPI7_MISO	13(25)	D25			D9	17(9)	SPIT_MISO
		GND			D10	16(10)	SPII_MOSI
5917_C\$0	15(24)	D24			3.3V		
SPI1_051	232(23)	D23			D22	194(22)	LCD_TE
		GND			D27	14(27)	SPIZ_SCK
Opina_SCO.	79(18)	D18			D17	50(17)	UART2_RTS
		RXD/015			GND		
		700/014			D4	216(4)	AUDIO MIL
		GND			SCL/D3		
		SV			SDA/D2		
		3V			3.3V		

NVIDIA Jetson Nano CircuitPython pinout

Power Distribution System

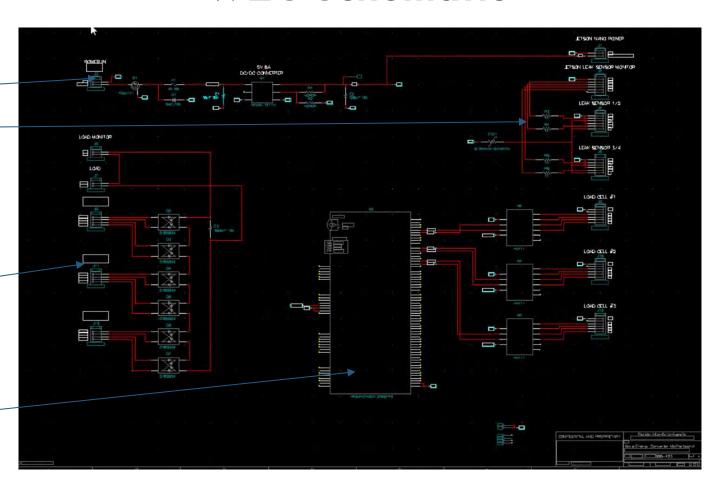



DC buck converter chain & associated schematic

Traco Power ten40-1211E DC/DC converter & associated schematic

Strain Sensing System

Anchored strain gauge


WEC Schematic

Power Distribution

Leak Monitoring

Power Sensing

Strain Monitoring

WEC Printed Circuit Board (PCB)

Strain Monitoring

Power Distribution

Power Sensing

PCB Implementation

Original electronics box

Updated electronics box

Joshua Masturzo handling the WEC in the Engineering West Pool

In-Water Testing

Peak wattage during pool testing

```
Motor output voltage: 25.549 V
POWER: 4.368 W

no leak on 1
no leak on 2
no leak on 3
no leak on 4
(-0.98175048828125, -0.0755615234375, 0.00872802734375, -0.1741943359375)
```

Going Forward

Gen2 Layout

02

Strain Gauge System

03

Re-simulation

O4 High-Vol Test Data O5
System Buoyancy

Acknowledgments

Dr. James Van Zwieten Henderson

Ed

Joshua Masturzo

James Laumeyer

References

- DePietro, A. R. (2022, May). *Numerical Simulation and Performance Characterization of Two Wave Energy Converters*.
- DiversiTech. (2024). *3/4IN. X 60FT. ECONOMY ELECTRICAL TAPE 10/PK.* DiversiTech. Retrieved 2024, from https://www.diversitech.com/tape-econelectape-34x60ft.
- Microsoft. (n.d.). *PuTTY*. Microsoft Store. Retrieved July 24, 2024, from https://apps.microsoft.com/detail/xpfnzksklbp7rj?amp%3Bgl=US&hl=en-us&gl=US.
- NREL. (2021). *WEC Sim Header*. OpenEl. OpenEl. Retrieved July 24, 2024, from https://openei.org/wiki/WEC-Sim.
- NVIDIA. (n.d.). *Getting Started with Jetson Nano 2GB Developer Kit*. NVIDIA Developer. Retrieved July 24, 2024, from https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit.
- Oubit. (n.d.). Step Motor Stepper 57 Steps 3.0Nm Large Torsion Low Noise High Speed for Equipment, Closed Loop Stepper Motor for CNC Mill Lathe Router. Amazon. Retrieved July 24, 2024, from https://www.amazon.com/Stepper-Torsion-Equipment-Closed-Router/dp/B0B5QFMMQ8.
- Plate, T. (2022). New Tool Helps Researchers Make the Most of Wave Power. NREL. NREL. Retrieved 24AD,. Wave power. (n.d.). Wikipedia. Retrieved July 24, 2024, from https://en.wikipedia.org/wiki/Wave_power.