Radio propagation digital twin to evaluate pedestrian localization in smart streetscapes

REU Scholar: Alyssa Falcon

Ad visor: Dr. Georgios Sklivanitis

Lehm an College, City University of New York

About

• I-SENSE has sensors deployed that detect RSSI values from Wireless emissions and can be found on Mobile Intel (wifi, phones, cars etc.)

- For the project we use 14 em itter locations and focusing on 4 sensors
- Digital Twin would help eliminate collecting data in person and help generate additional RSSI values

- Pedestrian finding on Clematis Street
- Mobility pattern of pedestrians or cars

Allow wireless access

Detects RSSI

Tools Used

Sionna Ray Tracing

 Simulates how radio signals travel through an environment as they bounce off objects

Open Street Maps

 Map of the world and you can get coordinates of an area you want to focus on

Blender

Tool that supports
 3d modeling and
 anim ation

Research Goals

• Create a Digital Twin of Clematis Street using Blender

- Gather RSSI values using Sionna Ray Tracing
- Apply localization methods to the Digital Twin

How RSSI collection is done?

- Get coordinates from OSM and import the 3d map into Blender
- Add in materials for objects and additional items in scene
- Export the .xml file needed to import into Sionna
- place receivers and transmitters in Sionna at specific coordinates from Blender
- Set up cars to move in the scene and updated coverage map

Trilateration

- Localization method which uses three known points to find an unknown point
- RSSI values from each known point were applied to the Friis Equation to find the Distance to the actual location

$$d = d_0 10 rac{p_r - p_0}{-10 v}$$

ullet Tested with different $oldsymbol{v}$ values to see if that would help our accuracy

$$v = rac{p_r - p_0}{-10\log_{10}\left(rac{d}{d_0}
ight)}$$

RSSI Collection Variance

Real Data

$$d = d_0 10 \frac{p_r - p_0}{-10v}$$

$$v=2 \qquad d_0=1 \qquad p_0=-39$$

Trilateration Location 1 - Distance Error: 13.30 meters

Digital Twin Data

$$p_0=\,-38 \qquad d_0=1 \ v=2$$

Real Data

$$d = d_0 10 \frac{p_r - p_0}{-10v}$$

Digital Twin Data

$$p_0=\,-38 \qquad d_0=1 \ v=2$$

Estimation Comparison

- Distance error
 between the
 estimated location
 and actual location
 of emitter
- Sim ilarities in distance errors

Conclusion

- Digital Twin helps with the what if situations since it allows you to control the environment
- Tool that provides efficiency, ability to make informed decisions, and an easy to implement simulation
- Future work to be added on to this Digital Twin can be implementing a fingerprinting localization method

Acknowledgment

Mobile Intel
Dr. Georgios Sklivanitis
Jose Baca

References

NVIDIA Labs. (n.d.). *Sionna ray tracing API*. Retrieved June 2024, from https://nvlabs.github.io/sionna/api/rt.htm l#

R. Bem ben ik and K. Falcman, "BLE indoor positioning system using RSSI-based trilateration," Warsaw University of Technology, Institute of Computer Science, Warsaw, Poland, Apr. 2020. [On line]. Available:

https://isyou.info/jowua/papers/jowua-v1ln3-3.pdf

R. R. Hastari, M. Yuliana, and P. Kristalina, "Students trajectory pattern finding scheme based on RSSI geolocation as a part of smart campus," in 2021 International Electronics Symposium (IES), Surabaya, Indonesia, 2021, pp. 337-342, doi: 10.1109/IES53407.2021.9594045