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EXCUTIVE SUMMARY 

This project specially studies signal timing with special consideration of freight traffic in urban 

areas. The rationale is that freight logistics are critical to quality of life and economies. However, 

freight mobility, especially along major freight corridors in urban areas, rarely gets special 

consideration in signal timing. The advent of the Internet of Things (IoT) makes vast information 

collection a reality. The rich data environment, combined with the boost in computational power, 

has brought unprecedented opportunities closer to reality than ever before for real-time, 

information-driven intersection traffic control under variants of traffic scenarios.  

The research advances the conventional traffic signal control through introduction of control 

theories and reinforcement learning methods to design highly efficient network control 

algorithms. This research focuses on developing a new traffic responsive network signal control 

in general, and specially with freight traffic considered. When dealing with network signal 

control, unlike the traditional formulations that either face challenges to quantify promptly such 

as total delay, or using simple linear combinations of observations as reinforcement learning’s 

reward that lack a theoretical basis (e.g., sum of weighted waiting time and queue length). 

Hence, this study first utilizes Lyapunov optimization to minimize the long-term average queue 

across the network and proposes backpressure as the network performance measure. Then the 

study builds a network signal control algorithm with reinforcement learning (RL) that utilizes 

backpressure as reward and uses double Deep Q-Network (Double-DQN) in the training process. 

The proposed algorithm is compared with traditional transportation methods and other RL-based 

methods.  

The numerical tests are conducted on two types of networks, a single corridor, and a local grid 

network under three traffic demand scenarios from low, medium, to heavy. Numerical test via 

simulation shows the benefits of the developed model and algorithms under different scales of 

truck traffic. The effect of different truck ratios (0%, 10%, 25%, and 40%) on each control 

algorithm was tested simultaneously for the same major and minor traffic volume scenarios. The 

tests consistently show that the proposed algorithm outperforms the others in terms of the 

average vehicle waiting time on the network when traffic volume is relatively high.  
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1.0 INTRODUCTION 

Freight logistics are critical to the quality of life and economies. However, freight mobility, 

especially along major freight corridors in urban areas, rarely gets special consideration in signal 

timing. Signals are intended to better facilitate traffic flow at level crossings from different 

approaches, thereby reducing traffic delay and vehicle emissions. The advent of the Internet of 

Things (IoT) makes vast information collection a reality. The rich information collected through 

sensors and inter-vehicle communication has enabled the large-scale application of 

reinforcement learning, a proven powerful tool for efficient and responsive decision-making. 

This research will build a traffic control algorithm based on the Lyapunov optimization theory 

and reinforcement learning in the context of big data with a specific objective of improving 

freight mobility along corridors and grid networks. 

The signal control is realized by implementing a control policy. A control policy determines the 

durations and sequences of phases at each intersection to facilitate traffic movement.  Here, a 

signal phase has three time intervals: green, yellow, and red. A phase refers to a time interval in 

which the traffic right of way under green and yellow does not change for traffic from all 

approaches. The signal control policy can take the form of a fixed-time control and vehicle 

actuated control or adaptive control driven by real-time traffic. Isolated intersection control only 

considers traffic local to the intersection, while network traffic control considers the coordinated 

effect of signals. Control implementation is through the control box at each intersection. When 

the intersections communicate with each other through a traffic control center that they are 

connected to, a network controller may be developed. Many conventional control methods in 

literature deal with idealistic traffic, such as uniform and constant traffic. Traffic variations are 

usually not considered enough. Although the isolated intersection has been intensively studied, 

unfortunately, little research on isolated intersections has revealed its network implications by 

now.  

The research models the vehicles in the signalized road network as a network queueing process 

and find the near-optimal control policy by the Lyapunov optimization theory, which create a 

metric called “backpressure” to measure the performance of the control policy in the network. 

The Lyapunov optimization theory provides sound theoretical basis for the control method and 

reward design for the reinforcement learning. Another major element in the proposed method is 

introduction of reinforcement learning to the control method. Recently, there is an increasing 

interest in academia to apply reinforcement learning techniques to improve control problems, 

especially in network control problems (Mannion et al., 2016). The network control problem is 

suitable for the reinforcement learning’s (RL) trial-and-error framework. By exporting and 

interacting with the environment after tremendous times, the RL agent can learn for the best 

policy with large probability. RL can automatically bridge the gap after substantial iterations as 

long as this relationship between the states and reward is expected to be relatively reliable and 

stable. Meanwhile, the RL agent can automatically learn control policies from the observed data. 

The policy can be manually evaluated before implementation and easily to be transferred.  
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However, it may face a time-consuming parameter tuning process and may be hard to interpret 

the policy trained by the RL model. The fundamental problem is the state and reward design.  

 

This research will focus on developing a new traffic responsive network signal control in 

general, but with freight traffic considered in particular, and provide a new metric for network 

signal control by directly translating general delay minimization into the maximization of 

intersection throughput, and thus provide a solid theoretical basis for the subsequent reward 

design of the reinforcement learning. Finally, combine transport theory with reinforcement 

learning methods to design highly efficient network control algorithms. Numerical tests via 

simulation will be conducted to show the benefits of the developed model and algorithms under 

different scales of truck traffic. The new control proposes new measures for optimal switching 

points for network signal control by directly translating general delay minimization into 

intersection throughput maximization, and thus to provide a basis for the subsequent reward 

design in the reinforcement learning. Also, the method can deal with traffic with uncertainty or 

randomness and be distributed implemented. 

The report is organized as the following: 

Section 2 summarizes the literature review. Some investigated research topics include fixed-time 

control, actuated control, adaptive control, and reinforcement learning-based control. 

Section 3 is about algorithm development, consisting of three parts. The first part focus on the 

origin of reinforcement learning, elaborating on how and why Double-DQN is chosen. The 

second part focus on the stochastic optimization and reward design for reinforcement learning. 

We utilize the Lyapunov optimization theory to get the time-invariant measure - backpressure for 

network delay minimization, which provides a solid theoretical basis for the following reward 

design of reinforcement learning. Finally, the work combines traffic theory and control theory 

with reinforcement learning methods to design highly efficient network control algorithms. We 

will show that the proposed measure meets states' definition and reward in reinforcement 

learning and is relatively reliable and stable.  

Section 4 tests the algorithm on the arterial and grid network case via simulation under various 

traffic volume and truck percentage cases, respectively, and compared with traditional 

algorithms (i.e., PASSER V) and reinforcement learning-based algorithms (i.e., RL-Queue).  

Section 5 summarizes the results and conclusions, briefly discusses the limitations of the study 

and presents directions and potential improvement for future work. 
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2.0 LITERATURE REVIEW 

Efficient trucking contributes to American economic viability. Trucking freight is ranked first 

among all the freight modes by both tonnage and value. Freight vehicles have significantly 

different characteristics in kinetic movement, economic values, and environmental effects. 

However, freight traffic’s impact is rarely well-addressed in developing control strategies in the 

literature for either individual intersections or continuous intersections on arterials. On the other 

hand, today’s technological developments offer unprecedented opportunities for new theories 

and models for traffic control. Equipment on the intersection or vehicles (e.g., cameras, 

detectors, GPS, etc.) can identify vehicle types and allow to take into account an increasing 

amount of real-time traffic data when adjusting signal timing to real-time traffic. 

 

2.1 FIXED-TIME CONTROL WITH COORDINATION 

Under fixed-time control, each controller has a predetermined timing plan. Fixed-time 

control is based on past traffic surveys and does not timely respond to real-time traffic 

conditions. Two strategies are generally employed to develop timing plans for an arterial street: 

progression-based methods (bandwidth maximization) and flow profile methods (delay and stops 

minimization). Green bandwidth maximization is essentially a geometry problem, which 

manipulates cycles in time-space diagrams to enable network intersecting coordination (Ficklin, 

1969; Petterman, 1947). Morgan and Little et al. first formulate the bandwidth maximization 

optimization as a mixed-integer linear programming problem, develop MAXBAND to an arterial 

and network by adding cycle constraints (Little, 1966; Little et al., 1981; Morgan and Little, 

1964). Gartner considers the specific features of each link and develops MULTIBAND, which 

optimizes all the signal control variables and bandwidth progressions on each roadway segment 

(“A multi-band approach to arterial traffic signal optimization,” 1991; Gartner et al., 1990). 

PASSER V explicitly optimizes over the set of possible phase sequences to maximize 

progression or minimize total delay and works smoothly under both undersaturated and 

oversaturated traffic conditions (N.A. Chaudhary et al., 2002). P.D. Whiting first uses the delay-

offset relationship and applies network topology theory to derive the network offsets (Hillier and 

Holroyd, 1965). The method is improved by incorporating disaggregate and dynamic 

programming techniques (Allsop, 1968; N.H.Gartner, 1972). Example of flow profile method 

includes TRANSYT-7F (Robertson, 1969) and SYNCHRO.  
 

2.2 ADAPTIVE CONTROL 

Traffic patterns depend on various external factors such as time, weather, and 

unpredictable situations such as accidents. These factors used to be indirectly considered in the 

adaptive traffic control system. Numerous adaptive systems have arisen over the past decades. 

SCOOT is a centralized system based on data collected from far upstream detectors. It uses the 

TRANSYT optimization method and prediction algorithm to produce cycles, offsets. It splits to 
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maintain the saturation rate of the intersection around the "ideal" value, but it suffers extensive 

calibration work (Hunt et al., 1981; Stevanovic et al., 2009). OPAC eliminates loops, offsets, and 

split constraints. Instead, OPAC maximizes the number of vehicles passing through an 

intersection by solving dynamic programming of the link state. OPAC maximizes performance 

by continually optimizing the system rather than periodically updating local controller settings 

(Gartner, 1982; Gartner et al., 2002). RHODES uses data collected from upstream and stop-line 

detectors for each approach to calculate loads on links and predict future platoon sizes, route 

choice, and network geometry(Head et al., 1992; Mirchandani and Head, 2001). Varaiya 

introduced the max pressure (MP) algorithm to reduce the risk of over-saturation and maximize 

the network's throughput by minimizing the pressure for a signalized network with multiple 

intersections. The 'pressure' of a phase is defined as the difference between the total queue length 

on incoming and outgoing approaches. Green time is given to phases with the most pressure to 

release (Varaiya, 2013). Although the algorithm requires only queue information at the 

intersection and has been tested in simulation under various cases, it still relies on assumptions to 

simplify the traffic condition and does not guarantee optimal results in the real world (“Adaptive 

Max Pressure Control of Network of Signalized Intersections,” 2016; Wei et al., 2019a). 

DORAS-Q is a real-time, traffic responsive control applied to isolated intersections. When 

making a switch decision, the controller chooses the phase with the highest efficiency, calculated 

based on the existing queues, short-term predictions for the current approach arrivals rates, and 

average historical arrival rates for other phases. DORAS-Q is much less data demanding but 

does require knowledge of the existing queues (Wang et al., 2017).  

 

2.3 CONTROL WITH REINFORCEMENT LEARNING 

Recently, there is an increasing interest in academia to apply reinforcement learning technique to 

improve control problem, especially in network control problem (Mannion et al., 2016). The 

application of reinforcement learning (RL) methods opens a new window for solving the traffic 

signal control problem. There are extensive attempts to improve traffic signal control 

performance by reinforcement learning to outperform the traditional transportation methods 

(Abdoos et al., 2014) (Abdulhai et al., 2003) (Brys et al., 2014) (El-Tantawy et al., 2013) (Chen 

et al., 2020). 

 

The reinforcement learning is capable of automatically learning high-quality control policies by 

interacting with the environment without an explicit performance model and with little system-

specific knowledge. Meanwhile, the RL agent can automatically learn control policies from the 

observed data with little system-specific knowledge or unrealistic assumptions. The policy can 

be manually evaluated before implementation and be easily transferred.  A key question is how 

to formulate a problem under RL's framework, i.e., the state, action and reward definition. This is 

a scientifically difficult but practically worthy effort. 

 

Various kinds of elements have been proposed to describe the environment state in the traffic 

signal control problem, such as queue length, waiting time, volume, speed, position of vehicles, 

delay, phase, and duration. The criterion for a good design of states and rewards is to enable the 

agent to extract useful information and direction of optimization from the environment (Wei et 

al., 2019c). Also, long short-term memory (LSTM) layer is added to the training network to 

represent the spatial-temporal characteristics of the traffic state (Li et al., 2020). The easiest way 
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is to define reward as a weighted sum of state components such as queue length, waiting time, 

and delay(Wei et al., 2018). There is a rich literature trying to find the optimal reward function 

(Yau et al., 2017)(Teo et al., 2014) (Araghi et al., 2013)(Jin and Ma, 2015). However, there are 

additional challenges to resolve about how to take freight vehicles into consideration. 

  

The problem is two-fold. First, one common issue of the current RL-based traffic signal control 

approaches is that the setting is often heuristic and lacks proper theoretical justification from 

transportation literature. Thus, there is a gap or need to connect reward with measurement 

endorsed by transportation theory that can be effectively observed after an action. Potential ideas 

include link congestion (Xu et al., 2020) with difference between upstream and downstream 

flows (Wei et al., 2019b). 

 

Second, although the ultimate goal is to minimize the delay or travel time of all vehicles 

trespassing the intersection or intersections, the delay or travel time is hard to use as an effective 

reward function in RL. The delay or travel time of a vehicle may hardly be directly observed. 

Although the link performance function (BPR function) may provide an estimate of the delay, 

the delay can be influenced by several other factors such as free-flow speed, platoon dispersion, 

travel patterns, and vehicle component. Model’s parameter adjustment may result in inaccurate 

estimation and thus lead to unsatisfactory performance of real-time signal control. All of the 

mentioned factors may bring additional randomness and map the same states to dramatically 

varying total rewards, thus fail the model from convergence.   

2.4 SUMMARY OF OPTIMIZATION OBJECTIVES 

Optimization of traffic signal control, as in other mathematical applications, uses an objective 

function to determine the optimal solution from a set of feasible groups, thereby maximizing (or 

minimizing) some metric. Traffic signal control's objective is to facilitate vehicles' efficient 

movement through the intersection or a roadway network. Various measures have been proposed 

to quantify the intersection or network's efficiency from different perspectives, such as 

maximizing the green bandwidth on major arteries. However, most of them fall into the 

following categories: travel time, delay, queue length, number of stops, and throughput (Wei et 

al., 2019c).  

Common goals are either to minimize the average travel time of vehicles or to maximize the total 

number of vehicles through the network. These two correspond to travel time and throughput, 

respectively. Another similar measurement is the total delay, which is the time a vehicle has 

traveled within the environment minus the expected travel time. Besides, the number of stops 

and total queue length is the description of the intersection states.  

The typical approach that transportation researchers take is to cast traffic signal control as an 

optimization problem under certain assumptions about the traffic model, e.g., vehicles come in a 

uniform and constant rate. In transportation studies, the inaccuracy arises from many 

assumptions in the models and approximations used to measure critical parameters. While many 

of the methods and models discussed above may provide the best solution within the defined 

space, the optimal values are subject to constant change due to the strong assumptions and the 

traffic flow's non-stationary nature. For simplicity without loss of generality, the research will 

convert truck to passenger vehicle equivalent by conversion factor in the simulation 
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(Transportation Research Board, 2016). The report will focus on addressing the near-optimal 

control mechanism and evaluating the effectiveness and robustness of the designed algorithm.  
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3.0 METHODOLOGY 

Traffic is a random process in terms of timing, volume, route choice and vehicle following, 

etc. therefore, traffic control is a complex process. The early literature often approaches the 

control problem by assuming a constant and deterministic traffic in order to develop 

approximation models. Models gradually progress by explicitly dealing with random traffic. 

We first briefly introduce Lyapunov optimization, a technique widely used in stochastic 

optimization problems for optimal control before we present our control methods. 

3.1 LYAPUNOV OPTIMIZATION 

Lyapunov optimization refers to the use of a Lyapunov function to optimally control a 

dynamical system. The Lyapunov function is a non-negative scalar measure of multidimensional 

state vectors describing the system. Usually, the function is defined as whose value becoming 

larger as the system moves to an undesired state. System stability is achieved by taking control 

actions that make the Lyapunov function drift in the negative direction towards zero. The core 

idea of Lyapunov optimization is to decompose a long-term optimization index with long-term 

constraints into sub-optimization problems according to time slices. Tassiulas and Ephremides 

first bring the Lyapunov techniques into queuing network control problems and propose stable 

routing and scheduling policies, backpressure routing, and max-weight scheduling algorithms, 

which stabilize the network whenever possible. It is worth noticing that the policy only requires 

knowledge of the current network states, and they do not require knowledge of the probabilities 

associated with future random events (Neely et al., 2005; Tassiulas and Ephremides, 1993, 

1992). The following is a synopsis of it. 

Consider a network of 𝑁 queues and let 𝜣(𝒕) = (𝛩1(𝑡), … , 𝛩𝑁(𝑡)) be the queue backlog 

vector at any time 𝑡 > 0, where 𝛩(𝑡) is a vector of actual queues in the network. Assume the 

𝛩(𝑡) vector evolves over time slot 𝑡 ∈ 𝑇. As a scalar measure of the "size" of the vector 𝛩(𝑡), a 

quadratic Lyapunov function 𝐿[𝛩(𝑡)] is defined as ∑ [𝛩𝑛(𝑡)]2𝑁
𝑛=1 , and the expected change in the 

Lyapunov function over one slot, Lyapunov drift is defined as 

𝛥(𝜣(𝒕)) = 𝐸[𝐿(𝜣(𝒕 + 𝟏)) − 𝐿(𝜣(𝒕))] (1) 

 

Consider the quadratic Lyapunov function and assume 𝐸[𝐿(0)] <  ∞. Suppose there are 

constants B > 0, 𝜖 ≥ 0, such that the following drift condition holds for all slots 𝜏 ∈ 𝑇 and all 

possible 𝛩(𝜏): 
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𝛥(𝛩(𝜏)) ≤ 𝐵 − 𝜖 ∑ 𝛩𝑛(𝜏)

𝑁

𝑛=1

 (2) 

 

Then all queues 𝜃𝑛(𝑡) are mean rate stable, more strictly, if 𝜖 >  0, all queues are strongly stable 

and  

 

𝑠𝑢𝑝
1

𝑡
∑ ∑ 𝐸[𝛩𝑛(𝜏)]

𝑁

𝑛=1

𝑡−1

𝜏=0

 ≤
𝐵

𝜖
 (3) 

 

3.2 BACKPRESSURE 

The algorithm is motivated by backpressure routing introduced in the network control 

(communication and grid) of electrical engineering (Neely et al., 2005; Tassiulas and 

Ephremides, 1992; Wongpiromsarn et al., 2012). One of the compelling features of 

backpressure routing is that it leads to maximum network throughput based on directly 

observable variables and requiring little knowledge about vehicle-specific information, which 

guarantees ease of and reliability of the implementation. The algorithm has been proven to 

inherit a key property of backpressure routing, maximizing network throughput, even if the 

signal at each node is determined in a distributed and independent manner. Such a distributed 

system reduces the computational difficulties and avoids the curse of dimensionality. 

Furthermore, it does not require any knowledge about vehicle-specific information (e.g., OD 

info, real-time arrival prediction). 

 
Figure 1: Permitted flow movement for left-turn phase on major arterial 

 

Consider a network with 𝑁 intersections and time-varying flow, each intersection 𝑖 ∈
1,2, … , 𝑚 consist of ℒ links, and each link corresponds to a phase, where ℒ =
{𝑙1, 𝑙2, … , 𝑙𝑚 … , 𝑙𝑀}. Each link 𝑙𝑚 consist of 𝑘 lanes, denoted as 𝑙𝑚

𝑘 . There are 𝑀 links in the 

network in total. For simplicity, we omit the lane marks in the following deduction. Flow from 

link 𝑙𝑎 to link 𝑙𝑏 denotes the corresponding lane flow through the intersection plotted in Figure 1. 
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Each intersection 𝑖 can be described by a tuple (𝑀𝑖, 𝑃𝑖 , 𝑍𝑖), where 𝑀𝑖  ⊆  𝐿2is a set of all 

possible movements through junction  𝑖; 𝑃𝑖 is a set of all the possible signal phases of 

intersection 𝑖; 𝜙𝑖𝑗 ∈ 𝑃𝑖 is the phases controlling the approach 𝑘 at intersection 𝑖. Each flow 

movement through the intersection 𝑖 is defined by a pair (𝑙𝑎, 𝑙𝑏), where 𝑙𝑎, 𝑙𝑏 ∈ ℒ2. Si is the set 

of the traffic state. For the simplicity of implementation, the traffic state here refers to a state that 

can be easily and quickly observed by the detectors at the intersection. For example, queue 

length, vehicle location. Each flow movement through the intersection 𝑖 is defined by a pair 
(𝑙𝑎, 𝑙𝑏), where (𝑙𝑎, 𝑙𝑏) ∈ ℳ𝒾. The pair (𝑙𝑎, 𝑙𝑏) denotes the approach from link 𝑙𝑎 thorough 

intersection 𝑖  to link 𝑙𝑏, which is plotted in Figure 1. 

The signal controller works in a discretized time horizon [0, 𝑇]. At each time step 𝑡, 

vehicles may enter and exit the link. For each link 𝑙𝑖 ∈ 𝐿, 𝑓𝑖(𝜙𝑖𝑗 , 𝑙𝑎, 𝑙𝑏 , 𝑧) gives the flow that to 

go from 𝑙𝑎 to 𝑙𝑏 through intersection 𝑖 under state 𝑧 when phase 𝜙𝑖𝑗 is activated. With link length 

and density known, the link flow can be estimated by the Greensheild model: 

 

𝑓(𝑡) = 𝑣𝑓𝑑(𝑡) − [
𝑣𝑓

𝑘𝑗𝑎𝑚
] 𝑑(𝑡)2 (4) 

 

Where, 

𝑣𝑓 is the free-flow speed,  

𝑑(𝑡) is the density on the link at time step t, 𝑑𝑗𝑎𝑚 is the jam density. 

Define 𝑊𝑎𝑏 = 𝛩𝑎(𝑡) − 𝛩𝑏(𝑡) as the differential queue backlog between link 𝑙𝑎 and link 𝑙𝑏. 

Then, for each phase 𝜙𝑖𝑗, the backpressure at time step 𝑡 is: 

 

𝐷𝜙(𝑡) = ∑ 𝑊𝑎𝑏

⬚

𝜙𝑖𝑗∈𝑃𝑖

𝑓𝑎𝑏(𝜙𝑖𝑗 , 𝑙𝑎, 𝑙𝑏 , 𝑠𝑡) (5) 

 

We now leave the backpressure here and conduct the Lyapunov drift analysis of the signal-

controlled network. Define 𝐿(𝛩) = ∑ 𝛩𝑖
2⬚

𝑖  as the Lyapunov function, representing a scalar 

measure of the network congestion. For a given control policy and network at time step 𝑡, the 

Lyapunov drift is: 

𝛥(𝛩(𝑡)) = 𝐸[𝐿(𝛩(𝑡 + 1)) − 𝐿(𝛩(𝑡))] (6) 

 

This scheme does not require knowledge of the individual vehicle's real-time arrival rates or OD-

specific information. Previous literature has shown that backpressure routing leads to maximum 

network throughput (Neely, 2010).  
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For any control policy, the Lyapunov drift at any time step 𝑡 satisfies: 

𝛥(𝛩(𝜏)) ≤ 𝐵 − 2[𝛷(𝛩(𝑡)) − 𝛤(𝛩(𝑡))] (7) 

where, 

𝐵 = (𝑧𝑚𝑎𝑥
𝑜𝑢𝑡 )2 + (𝑧𝑚𝑎𝑥

𝑖𝑛 )
2
 (8) 

𝛷(𝛩(𝑡)) = ∑ 𝑄𝑖(𝑡)

⬚

𝑖

𝐸[∑ 𝑧𝑖𝑏
𝑜𝑢𝑡(𝑡)

⬚

𝑏

− ∑ 𝑧𝑎𝑖
𝑖𝑛(𝑡)

⬚

𝑎

|𝜣(𝑡)]} (9) 

𝛤(𝛩(𝑡)) = ∑ 𝛩𝑖(𝑡)

⬚

𝑖

𝐸[𝛩(𝑡)] (10) 

𝑧𝑚𝑎𝑥
𝑜𝑢𝑡  and 𝑧𝑚𝑎𝑥

𝑖𝑛  are the max input and output flow, respectively. Notice that 

∑ 𝛩𝑖
⬚
𝑖 (𝑡)[∑ 𝑧𝑖𝑏

𝑜𝑢𝑡(𝑡)⬚
𝑏 − ∑ 𝑧𝑎𝑖

𝑖𝑛(𝑡)⬚
𝑎 ] = ∑ 𝑓𝑎𝑏

⬚
𝑎𝑏 (𝑡)[𝛩𝑎(𝑡) − 𝛩𝑏(𝑡)], therefore, for every 𝑡, we 

find the connection between the Lyapunov drift and the backpressure. The difference between 

queue is the pressure. Backpressure can be interpreted as the flow weighted pressure. Equation 9 

becomes the backpressure defined in Equation 5. Therefore, when the network is stable, 

minimizing the Lyapunov drift is equivalent to maximize the backpressure, thus maximizing the 

network throughput. The network capacity region Λ is the closure of the set of all matrices 𝜆𝑖 that 

can be stably supported over the network, considering all possible algorithms, it has proven that 

no control algorithm can achieve stability beyond the set Λ, even if the entire set of future events 

is known in advance (Tassiulas and Ephremides, 1992). The signal control problem assumes that 

the road network is not beyond its capacity, which is a reasonable assumption. If it exceeds its 

capacity, an overpass should be considered at the intersection. The capacity region of the 

network is given by the set 𝛤, such that there exists a policy that makes the network stable and 

has 

𝜆𝑖 + 𝜖 ≤ ∑ 𝑧𝑖𝑏
𝑜𝑢𝑡(𝑡)

⬚

𝑏

− ∑ 𝑧𝑎𝑖
𝑖𝑛(𝑡)

⬚

𝑎

 (11) 

 

Also notice in Equation 9, we have 

𝛷(𝛩(𝜏)) = ∑ 𝛩𝑖(𝑡)

⬚

𝑖

[∑ 𝑧𝑖𝑏
𝑜𝑢𝑡(𝑡)

⬚

𝑏

− ∑ 𝑧𝑎𝑖
𝑖𝑛(𝑡)

⬚

𝑎

] ≥ 𝜖 ∑ 𝛩𝑖(𝜏)

⬚

𝑖

 (12) 

 

Therefore, to minimize the 𝛷(𝛩(𝑡)) is equivalent to maximize the backpressure, and thus 

limiting the size of weighted queue backlog at time step 𝑡, ∑ 𝛩⬚
𝑖 (𝑡). We assume there exists a 

state-only policy 𝛼∗(𝑡), which satisfies: 

𝐸[𝑌𝑖(𝑡)] = 𝐸[𝑌𝑖(𝛼∗(𝑡), 𝑠𝑡)] ≤ 𝜖 ∀𝑖 ∈ {1,2, … , 𝐾} 
(13

) 
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Where, 

𝑦𝑖(𝛼∗(𝑡), 𝑠𝑡) = ∑ 𝑧𝑖𝑏
𝑜𝑢𝑡(𝑡)

⬚

𝑏

− ∑ 𝑧𝑎𝑖
𝑖𝑛(𝑡)

⬚

𝑎

 

 

(14) 

𝑓𝑖𝑗(𝑡) = 𝑓𝑖𝑗(𝛼∗(𝑡), 𝑠𝑡) (15) 

 

The state-only policy refers to the optimal action 𝛼∗(𝑡) is chosen by relying only on the observed 

state 𝑠𝑡 in each time slice t. We can show that: 

 

𝛥(𝛩(𝜏)) ≤ 𝐵 − 2 ∑ 𝛩𝑖(𝑡)

⬚

𝑖

𝐸[𝑌𝑖(𝑡)] (16) 

𝐸[𝛥(𝛩(𝜏))] ≤ 𝐵 − 2𝜖 ∑ 𝐸

⬚

𝑖

[𝛩𝑖(𝑡)] (17) 

 

Summing the Equation 17 from 𝜏 = 0 to 𝜏 = 𝑇 and notice the definition of Lyapunov drift 

𝛥(𝛩(𝑡)) = 𝛩(𝑡 + 1) − 𝛩(𝑡) and assume 𝛩(0) = 0, we have 

0 ≤ 𝐸[𝛩(𝑇)] ≤ 𝑡𝐵 − 2𝑡𝜖 ∑ ∑ 𝐸[𝛩𝑖(𝑡)]

⬚

𝑖

𝑡−1

𝜏=0

 (18) 

1

𝑡
∑ ∑ 𝐸

⬚

𝑖

𝑡−1

𝜏=0

[𝛩𝑖(𝑡)] ≤
𝐵

𝜖
 (19) 

 

Notice that 𝐵 is defined in Equation 8. Little's theorem provides a base for analyzing the 

queueing delay. The theorem states that when a network reaches a steady state, the average 

number of jobs in a queue is equal to the product of the average arrival rate of the jobs and the 

average time a job is kept in the queue. By Little's theorem, minimizing delay achieving 

maximizing the throughput. 

3.3 Q-LEARNING 

The Q-learning approach to solving the Bellman equation: 

𝑉𝜋(𝑠) = ∑ ∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)]

𝑠′∈𝒮𝑎∈𝒜

 

 

(20) 

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑝(𝑠′|𝑠, 𝑎) [𝑟(𝑠, 𝑎, 𝑠′) + 𝛾 ∑ 𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′)

𝑎′∈𝒜

]

𝑠′∈𝒮

 

 

(21) 
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Q-Learning poses an idea of assessing the quality of an action that is taken to move to a state 

rather than determining the possible value of the state being moved to. The Q-learning algorithm 

makes the following update:  

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (22) 

 

The quantity in square brackets in Equation 22 is exactly zero when 𝑎′ is the optimal action to 

take under states 𝑠′. In other word, 𝑄(𝑠′, 𝑎′) is the optimal action-state value pair. The quantity in 

the square brackets can be interpreted as the "Bellman error", the error term describes how far off 

the target quantity 𝑟(𝑠, 𝑎, 𝑠’) + 𝛾𝑚𝑎𝑥𝑎’𝑄(𝑠’, 𝑎’) is from the estimates 𝑄(𝑠, 𝑎) in the current step. 

Q-learning algorithm iteratively updates 𝑄(𝑠, 𝑎) by Equation 22 to reduce the Bellman error 

until reach a converged solution. 

However, to store all the action-state pair value s, Q-learning requires a finite state and action 

space where it is possible to maintain a table lookup the estimated Q-value. However, it is not 

always the case where we have finite states and/or actions. When we have an infinite state space 

and/or action space, specifically in developing the traffic signal control policy, then it becomes 

impossible to store all the value pairs. An elegant way is to use function approximation to 

generalize across states and store the approximation function, which is typically done using a 

deep neural network due to their expressive power. And thus, we will introduce Deep Q-Network 

(DQN) in the next subsection. 

3.4 REINFORCEMENT LEARNING AND DOUBLE DQN 

The basic idea behind many reinforcement learning algorithms is to estimate the action-value 

function, by using the Bellman equation as an iterative update, e.g. 𝑄𝑡+1(𝑠, 𝑎) =

𝐸 [𝑟(𝑠, 𝑎, 𝑠′) + 𝛾 𝑚𝑎𝑥
𝑎∈𝐴𝑠

𝑄𝑡 (𝑠′, 𝑎′)|𝑠, 𝑎]. Such value iteration algorithms converge to the optimal 

action-value function, 𝑄𝑡(𝑠, 𝑎) → 𝑄∗(𝑠, 𝑎) as 𝑡 → ∞ (Mnih et al., 2015; Richard S. Sutton and 

Andrew G. Barto, 2015).  

In DQN, the experience replay memory and the target network were decisive in allowing 

the neural network to learn the tasks through RL. Their drawback is that they drastically increase 

the sample complexity and overestimate the target Q value. This over-estimation is inevitable in 

regular Q-learning, and therefore the double DQN is proposed (Hasselt, 2010). Applying double 

learning to DQN is straightforward: there are already two value networks: the trained and target 

networks. Instead of using the target network to both select the greedy action in the next state 

and estimate its Q-value, here the trained network weights 𝜃 is used to select the greedy 

action 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝜃(𝑠′, 𝑎′) while the target network only estimates its Q-value. This 

induces only a minor modification of the DQN algorithm and significantly improves its 

performance and stability. The main idea of double DQN is to train independently two value 

networks: one will be used to find the action with the max Q-value and estimate the Q-value 

itself. Even if the first network chooses an over-estimated action as the greedy action, the other 

might provide a less over-estimated value for it, resulting in a better solution.  
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3.5 BACK PRESSURE WITH REINFORCEMENT LEARNING 

One major issue of current RL-based traffic signal control approaches is that the setting is 

often heuristic and lacks proper theoretical justification from transportation literature. Common 

goals are either to minimize the average travel time of vehicles or delay. However, these goals 

are either "delayed" or heavily rely on estimation, resulting in a mismatch between state and 

reward, which leads to poor performance. The algorithm put forward in this section is based on 

RL but theoretically grounded by the backpressure method mentioned above. Backpressure has 

the property of being based on real-time observable quantities, a perfect fit for the state-reward 

pair design in reinforcement learning. The only information required is the queue backlog on 

each lane of the intersection in the roadway network, the lane density, and lane length. Detectors 

can acquire the first two. Greenshields model can calculate the flow with a known density. The 

RL formulation is demonstrated as the following: 

State: current phase 𝜙, the total number of vehicles and stopped vehicles (speed < 0.1 m/s, or 

0.22 mph) on each incoming lane (𝑙𝑎) and outgoing lanes (𝑙𝑏). 

Action: at each time 𝑡, each agent chooses a phase as its action 𝑎𝑡 from action set 𝐴, indicating 

the traffic signal should be set as current phase 𝜙. Each action candidate 𝑎𝑖 is represented as a 

one-hot vector.  

Reward: the reward for an intersection is the backpressure. The backpressure of an intersection 𝑖 
is defined as the absolute sum of the backpressure over all phases, denoted as: 

𝑅𝑖(𝑡) = − ∑ |𝐷𝜙(𝑡)|

⬚

𝜙∈𝑃𝑖

 (23) 

In RL, the long-term reward is the objective for optimization, and the solution is derived from 

the trial-and-error search. We adopt Double-DQN as a function approximator. To stabilize the 

training process, we maintain an experience replay memory by adding the new data samples and 

removing the old samples occasionally. Periodically, the agent will take samples from memory 

and use them to update the network.  
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4.0 SIMULATION 

4.1 SIMULATION SETTINGS 

Numerical tests are conducted on two types of networks: a single corridor and a grid 

network. The reason for separately testing on a single corridor is that single corridors are often 

the major means of dealing with urban traffic. We have utilized the SUMO 1.8 micro-simulator 

in conjunction with TraCI (Traffic Control Interface) 1.8 for modeling the case. SUMO 

(Simulation of Urban MObility) is an open-source, microscopic and continuous traffic simulation 

package designed to handle large traffic networks simulation with a large set of tools for scenario 

creation (Lopez et al., 2018). SUMO allows us to create a traffic simulation environment and 

track every vehicle. TraCI implements RL-based real-time signal control possible. The RL agent 

is built and trained in Pytorch 1.7.1 and Python 3.8. 

         
(a) (b) 

  

  
(c) (d) 

Figure 2: Intersection simulation environment 

 

Figure 2 (a) and (c) presents the layout of an individual intersection of major and minor 

arterial without and with truck volume, respectively, in the simulation network. Figure 2 (b) and 
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(d) present the intersection of two major arterials, without and with truck volume, respectively. 

The link on minor arterial at each intersection consists of two through lanes. Each of the through 

lanes also servers the turning traffic. The link on major arterial at each intersection consists of 

one left-turn lane and two through lanes. One of the through lanes also servers the right-turning 

traffic. In reality, there are singular dominating corridors that can be easily identified.  

Figure 3 (a) presents the available phase timing plan for the intersection of major and 

minor arterial, and (b) shows the one for the intersection of two major arterials. The phase plan 

also contains the available action for selecting the RL agent. The amber interval is set as 5 

seconds and represents the time between two consecutive phases to clear the intersection, 

consisting of 3 seconds yellow and 2 seconds all-red interval. The min green time is 5 seconds, 

and the max green time is 30 seconds. The ring-and-barrier diagram is for illustrative purposes 

and presents the phase plan for the simulation. In reality, the RL algorithm neither requires four 

phases nor a fixed sequence.  

 

         
(a) (b) 

Figure 3: Available phases in traffic signal control of the simulation 

 

Figure 4 illustrates the arterial (a) and grid network (b) used in the simulation. The test 

arterial consists of five intersections and the grid network contains 4 × 4 = 16 intersections. The 

arterial in the numerical test consists of one major arterial road with higher traffic volumes and 

five minor roads with lower volumes. The minor street crossings spaced 1640 ft (500 m) along 

the major arterial with free-flow speed 𝑣𝑓 50 mph. The grid network in the simulation makes of 

two major arterial roads with higher volumes and three minor roads with lower volumes in each 

direction. The distance between roads, free-flow speed, and the normal travel times are the same 

with the arterial. Three traffic scenarios, high, medium, and low, are used for the test, as 

indicated in Table 1.  
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 (a) (b) 

Figure 4: Arterial and grid network environment 
 

 

Table 1 Traffic volume in the simulation 
Traffic Scenario Major Roads(veh/h) Minor Roads(veh/h) 

Low 500 200 

Medium 900 300 

High 1300 400 

             

Also, in each scenario, the effect of different truck ratios (0%, 10%, 25%, and 40%) on each 

control algorithm was tested simultaneously for the same major and minor traffic volume 

scenarios. The research will convert truck to two passenger vehicle in the simulation (Federal 

Highway Administration, 2017). The vehicle type defaults are shown in Table 2. 

Table 2 Vehicle Type parameter defaults in the simulation 
Vehicle Type  Length 

Width 

Height 

MinGap Acceleration Deceleration Emergency 

Deceleration 

Passenger 5 m 

1.8 m 

1.5 m 

2.5 m 2.6 m/s2 4.5 m/s2 9 m/s2 

Truck 16.5 m 

2.55 m 

4 m 

2.5 m 1.1 m/s2 4 m/s2 7 m/s2 
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4.2 TESTED ALGORITHMS IN SIMULATION 

We compare our model with the following two categories of methods: non-machine learning 

transportation methods and RL-based methods. Non-machine learning methods include Fixed 

timing plan with coordination, DORAS-Q, MaxPressure and Backpressure. We directly optimize 

the waiting time and average queue length by double DQN and use them as baselines of the 

reinforcement learning based algorithms. All algorithms are fine-tuned. And all RL-based 

algorithms are trained by Double DQN. 

Fixed-time: Fixed-timing plan and offsets optimized with PASSER V. Fixed timing plan with 

green wave progression is the most classical approach achieving coordination on arterial in 

practice. 

DORAS-Q: DORAS-Q is designed for isolated intersection control and may be applied to the 

network as a distributed control system in which each intersection only optimizes its control and 

the entire system adapts gradually, it requires the existing queue length, short-term (usually 5 

seconds) and the average historical arrival rates for each phase to estimate the switch-to 

efficiency and phase efficiency. Then decide on changing or keeping the current phase based on 

the discharge efficiency. 

Max Pressure (Varaiya, 2013): Max pressure defines the differences of queue between the 

current and the downstream intersection as pressure of the phase, and greedily chooses the phase 

with the maximum pressure. 

Back pressure: Consider the flow on the link, greedily chooses the phase with the maximum 

backpressure. 

RL-WaitingTime: Directly define the waiting time as the reward function. Train RL agent to 

minimize the waiting time of all vehicles in the network.  

RL-Queue: Directly define the average queue length as the reward function. Train RL agent to 

minimize the average queue length of each link in the network.  

RL-MaxPressure: Directly define the total network pressure as the reward function. Train RL 

agent to maximize the negative of absolute maxpressure. 

RL-BackPressure: Directly define the total network backpressure as the reward function. Train 

RL agent to maximize the negative of absolute backpressure defined in Equation 23. 

All algorithms are fine-tuned. And all RL-based algorithms are trained by Double DQN. Section 

4.3 illustrates the results of arterial case and section 4.4 presents the results of grid network case. 

4.3 AGENT PERFORMANCE ON SCENARIOS WITH UNIFORM 

PASSENGER VEHICLE FLOW 

Figure 5 shows the agent's performance and the fast convergence in the arterial 

environment during the training process. The horizontal axis of the figures reflects the episodes. 
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The top to the bottom of the figure, corresponds to low, medium, and high scenarios, 

respectively. The vertical axis of Figure 5 (a) reflects the average back pressure of an 

intersection, while the vertical axis of Figure 5 (b) reflects the average waiting time of each 

vehicle. The figures show that the training agent in the arterial environment converges after 100 

episodes. Figure 5 illustrates the convergence curve of our agents' learning process with respect 

to the average waiting time of each episode. Compared with the backpressure curves, we can see 

that the travel time is closely correlated with pressure. Convergence curve of average duration 

and our reward design (back pressure). 

 

 
(a) (b) 

Figure 5 Average backpressure and waiting time during training process over 300 episodes 

in arterial case 

 

Figure 6 is the coverage curve of average backpressure and waiting time in the gird network 

case. The convergence trend is similar to that of the arterial case. The training processing 

converges around 100 episodes. Because the structure of the network is more complex than 

arterial so that the fluctuation after convergence is more unstable and violent. The correlation 

between backpressure and travel time can also be found in the grid network case. 
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(a) (b) 

Figure 6: Average backpressure and waiting time during training process over 300 

episodes in the grid network case 
 

We compare our model with the following two categories of methods: non-machine 

learning methods and RL-based methods. Non-machine learning method includes Fixed timing 

plan with coordination, DORAS-Q and MaxPressure. Fixed timing plan with green wave 

progression is the most classical approach to achieving coordination on the arterial in practice. 

Fixed-timing plans and offsets are optimized with PASSER V.  DORAS-Q (Wang et al., 2017) is 

designed for isolated intersection control, and may be applied to the network as a distributed 

control system in which each intersection only optimizes its control and the entire system adapts 

gradually, it requires the existing queue length, short-term (usually 5 seconds) and the average 

historical arrival rates for each phase to estimate the switch-to efficiency and phase efficiency. 

Then decide on changing or keeping the current phase based on the discharge efficiency. 

MaxPressure (Varaiya, 2013) defines the differences of the queue between the current and the 

downstream intersection as the pressure of the phase and greedily chooses the phase with the 

maximum pressure. All algorithms are fine-tuned. Table 3 illustrates the results of the 

simulation. 

Table 3 Average vehicle delay in arterial and grid network case with uniform passenger 

vehicle flow (in seconds) 
 Low Volume Medium Volume High Volume 

 Arterial Network Arterial Network Arterial Network 

Fixed-time 30.93 93.73 38.06 139.87 89.82 191.16 

DORAS-Q 23.25 72.77 36.64 84.82 76.64 148.92 

Max Pressure 19.88 48.22 31.59 56.71 71.62 167.61 

Back Pressure 18.99 46.94 26.92 56.49 56.86 145.04 

RL-WaitingTime 15.61 39.73 34.16 69.27 80.13 140.84 

RL-Queue 15.38 40.67 26.47 60.88 66.47 140.87 

RL-MaxPressure 16.36 44.56 25.57 51.43 51.56 107.43 

RL-Backpressure 13.46 37.34 22.64 49.72 46.07 99.37 
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Figure 7: Average vehicle delay in arterial case (in seconds) 

 

 
Figure 8: Average vehicle delay in grid network case (in seconds) 

 

Figure 7 and 8 presents RL-Backpressure outperforms the other four signal control algorithms 

in both arterial and grid network cases. Not surprisingly, fixed-time control performs at the 

bottom, but it does not stop using it as a benchmark. Under all scenarios, DORAS-Q and 

MaxPressure outperform the fixed time control with coordination. RL baseline have satisfied 

performance in low volume scenarios, are exceeded by the RL-MaxPressure and RL-

BackPressure under medium and high-volume cases. 

4.4 AGENT PERFORMANCE ON SCENARIOS WITH TRUCK FLOW 

We also investigate the effect of different truck ratios (0%, 10%, 25%, and 40%) on each control 

algorithm. All settings are the same as the uniform passenger vehicle flow case except for the 

various truck ratio. We also conduct the simulation in the low, medium, and high traffic flow 

scenarios. Specifically, the high traffic volume of 25% means that the traffic volume on the 

major/minor arterials remains at 1300/400 vehicles/hour, with 975/300 trucks/hour on the 

major/minor arterials and 325/100 vehicles/hour passenger vehicles on major/minor arterials. 

When calculating the queue, we assume a truck equals two passenger vehicles. 

4.4.1 10% truck volume 

Table 4 illustrates the results of the simulation under all scenarios with 10% of truck volume. 

Table 4 Average vehicle delay in arterial and grid network case with 10% truck volume (in 

seconds) 
 Low Volume Medium Volume High Volume 

 Arterial Network Arterial Network Arterial Network 

Fixed-time 36.96 99.26 52.72 153.79 132.38 226.39 

DORAS-Q 28.87 74.82 49.76 96.09 130.47 184.25 

Max Pressure 20.96 52.56 41.50 75.43 125.14 185.82 

Back Pressure 19.87 54.61 37.14 77.58 113.65 165.09 

RL-WaitingTime 15.35 45.99 40.76 89.58 108.69 143.35 

RL-Queue 15.45 43.56 32.21 88.17 106.03 147.22 

RL-MaxPressure 18.47 51.12 34.87 78.77 91.72 125.19 

RL-BackPressure 17.82 46.73 30.73 75.24 90.55 120.86 
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Figure 9 and Figure 10 presents RL-BackPressure outperforms the other four signal control 

algorithms in both arterial and grid network cases. Not surprisingly, fixed-time control performs 

at the bottom, but it does not stop using it as a benchmark. Under all scenarios, DORAS-Q and 

MaxPressure outperform the fixed time control with coordination. RL baseline have satisfied 

performance in low volume scenarios, are exceeded by the RL-MaxPressure and RL-

BackPressure under medium and high-volume cases. 

 

 
Figure 9 Average vehicle delay through the arterial with 10 % truck volume (in seconds) 

 

 
Figure 10 Average vehicle delay through the grid network with 10 % truck volume (in 

seconds) 

 

4.4.2 25% truck flow 

Table 5 illustrates the results of the simulation under all scenarios with 25% of truck volume. 

Table 5 Average vehicle delay in arterial and grid network case with 25% truck volume (in 

seconds) 
 Low Volume Medium Volume High Volume 

 Arterial Network Arterial Network Arterial Network 

Fixed-time 42.13 100.62 84.94 181.88 148.03 258.91 

DORAS-Q 31.14 75.38 57.52 128.95 118.36 227.39 

Max Pressure 23.18 59.65 41.92 109.28 122.27 207.33 
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Back Pressure 21.95 61.12 36.58 96.58 119.61 200.69 

RL-WaitingTime 19.29 35.61 47.26 89.97 120.31 178.33 

RL-Queue 17.78 36.23 35.39 87.11 119.78 176.39 

RL-MaxPressure 19.39 51.47 39.01 88.06 115.39 172.83 

RL-BackPressure 18.50 50.55 34.58 85.84 113.48 165.39 

 

Figure 11 and Figure 12 presents RL-BackPressure outperforms the other four signal control 

algorithms in both arterial and grid network cases. Similar to the 10% truck volume case, 

DORAS-Q and MaxPressure outperform the fixed time control with coordination. RL baseline 

have outperformance other algorithms under low volume scenarios. RL-MaxPressure still have 

the best performance under medium and high-volume cases. 

 
Figure 11 Average vehicle delay through the arterial with 25 % truck volume (in seconds) 

 

 
Figure 12 Average vehicle delay through the grid network with 25 % truck volume (in 

seconds) 

 

4.4.3 40% truck flow 

Table 6 illustrates the results of the simulation under all scenarios with 40% of truck volume. 

Table 6 Average vehicle delay in arterial and grid network case with 40% truck volume (in 

seconds) 
 Low Volume Medium Volume High Volume 

 Arterial Network Arterial Network Arterial Network 

Fixed-time 69.04 106.25 129.64 192.63 267.68 274.39 
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DORAS-Q 34.02 76.68 120.33 146.14 225.39 259.32 

Max Pressure 27.93 59.80 127.96 128.93 239.37 254.30 

Back Pressure 23.25 62.95 117.83 126.27 216.21 252.03 

RL-WaitingTime 25.11 52.94 119.72 162.89 232.39 263.18 

RL-Queue 23.74 51.14 114.71 165.79 232.79 247.28 

RL-MaxPressure 22.92 50.46 120.05 125.82 216.39 235.32 

RL-BackPressure 22.18 48.06 111.05 119.37 208.72 228.07 

 

Figure 13 and Figure 14 presents RL-BackPressure outperforms the other four signal control 

algorithms in both arterial and grid network cases. With higher percentage of truck volume, RL-

MaxPressure have the best performance across all the scenarios.  

 
Figure 13 Average vehicle delay through the arterial with 40 % truck volume (in seconds) 

 

 
Figure 14 Average vehicle delay through the grid network with 40 % truck volume (in 

seconds) 

 

4.5 DISCUSSION  

We summary the simulation results in section 4.3 and 4.4. In general, considering the truck flow 

may increase the simulation may increase the total delay at the intersection. The higher the truck 

volume percentage, the more delay driver may experience at the intersection with the area. RL 

based algorithm have overall good performance in terms of total delay in the medium and high-

volume scenarios. Also, the performance of the algorithms with the addition of reinforcement 

learning algorithms improves for the corresponding non-reinforcement learning algorithms. In 
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most scenarios, the RL-BackPressure algorithm outperforms all other comparable algorithms. The 

RL-BackPressure algorithm has excellent performance in the med and high-volume scenarios. RL 

baselines have the best performance in the low-volume scenario. We will analyze each algorithm’s 

performance in detail. 

Without a doubt, the green wave facilitates the vehicle's movement on the arterial and gird network 

with signalized intersections. However, even though the green wave is added to it, then the fixed 

timing design does not inherently consider the dynamic changes of traffic flow or responsiveness 

to the current situation at the intersection. Not surprisingly, fixed-time control performs at the 

bottom, but it does not stop using it as a benchmark. 

DORAS-Q estimates the intersections' efficiency within a certain period and predicts future 

arrivals. The inaccurate estimation or prediction inevitably leads to flawed decisions. Even if the 

controller can make accurate predictions (e.g., during a fully connected vehicle), DORAS-Q 

optimizes based only on the predicted arrival stream information. On the one hand, the predictions 

cannot be 100 percent accurate, and in the absence of other information, there is no correction 

mechanism for the decision. Minor errors will gradually accumulate so that the decision does not 

match the future situation. Further, the vehicle will still interact with the controller, and this 

interaction will change the arrival stream, thus rendering the long-ago beyond-intersection 

predictions useless and degrading the decision. In addition, vehicles usually arrive in the form of 

a platoon. The current phase drops rapidly to zero after clearing the queue, allowing the signal to 

switch to the next phase based on DORAS-Q. Myopic switching frequently occurs during the 

signal control cycle, thus defeats the original design intent. However, it does not consider the 

coordination between intersections, and thus the performance has only slightly improved. In the 

grid network case, the DORAS-Q performs much better than fixed-time control because each 

intersection could utilize the arrival steam information from nearby intersections. Nonetheless, the 

performance is still not good enough due to the inaccurate prediction and errors accumulation. On 

the other hand, the truck volume may decrease the algorithm's performance compared with the 

uniform passenger vehicle flow case. Using conversion factor to convert truck to passenger vehicle 

in the queue length estimation may not work well in the algorithm. Although the algorithm is based 

on the queue length estimation, more truck characteristics may need to take into consideration and 

improve the mechanism of the algorithm. 

MaxPressure utilizes the current information at the intersection, which overcomes the shortcoming 

of prediction. However, the algorithm greedily chooses the phase with the maximum pressure 

without utilizing historical knowledge so that the solution may be the local optimum rather than 

the global optimum. The more complex the road network, the more likely it is to converge to the 

local optimum. That is why the MaxPressure surprisingly under-performs DORAS-Q in the gird 

network case. In the simulation, either pure MaxPressure or pure back Pressure algorithm is 

susceptible to the flow pattern. With the same initial conditions, the difference in realizations is 

significant, especially under high-volume traffic. This inspires us to use the backpressure, whose 

discharge flow rate changes with the link's current flow. With the reinforcement added to it, the 

RL-MaxPressure, the deficiency is compensated by many learning iterations, resulting in an 

approximate optimal solution in the same state. Backpressure considers the potential flow through 

the node and refining the control theory in queuing networks. Neither of the pressure-like control 

requires input flow prediction or forecast. The only info required is the current state. A slight delay 

in the information collected will not affect the performance.  
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With truck volume in consideration, the truck volume may bring more impact or turbulence on the 

downstream traffic volume, which may be why the pressure series algorithm relatively 

underperforms in the low volume and low truck percentage scenarios. The addition of truck 

volume may increase the overall delay compared with the pure passenger flow case. There are two 

ways to explain the situation. First, a truck is usually longer than a passenger vehicle. A conversion 

factor or truck coefficient is typically used to convert the truck to passenger vehicle equivalent in 

transportation engineering. With the same traffic volume, the traffic flow with trucks will actually 

be higher than the equivalent pure passenger vehicle flow. Second, trucks are slower to accelerate 

and decelerate than passenger vehicles. When trucks approach or leave the intersection, the 

inhomogeneous may heterogeneity the traffic flow. The conversion factor may not be the same 

when the controller decides the phase. Also, the truck volume brings more disturbance to the 

coverage of the RL baseline algorithms. The results variation is more considerable than that of 

pure passenger vehicle flow case. And it takes more time to converge in each RL enhanced 

algorithm. 

Considering that the traffic movement process at each intersection is stable, the system is also 

stable accordingly. In the main road environment without turnarounds, the actions taken by the RL 

agents do not create loops or block the network, making the imbalance between the intersections 

decrease and thus allowing efficient use of green light time. A common pseudo-refutation scenario 

is that if each intersection has the same long queue in each direction, then the pressure at each 

intersection is 0. Wouldn't the agent exacerbate the congestion? It is worth noting that this so-

called refutation scenario can only exist in a single moment and is very unstable. Even in such a 

case, once a phase turns green, the backpressure in that direction will gradually decrease. After a 

certain point, the RL agent will choose to end the green light in that direction and give it to the 

next phase to earn a higher "reward", and the whole network system will evolve again in the 

direction of the lowest overall flow and pressure. Therefore, for a given period T, our RL agent 

can provide the maximum throughput, thus minimizing the travel time of all vehicles in the system. 
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5.0 CONCLUSION 

Traffic signal control is installed to manage traffic flow, alleviate traffic congestion and increase 

road network efficiency. Deep reinforcement learning algorithms have recently become 

increasingly popular and have been widely recognized as an effective tool to solve the traffic 

control problem.  

Overall, several measurements may be used for the network performance evaluation, including but 

not limited to the total travel time of vehicles in the network, average vehicle delay and the number 

of stops, and average travel speed. Several metrics are usually needed to validate each other for 

the network control performance evaluation. Thus, signal control's core problem is how to translate 

these well-known measurements (i.e., minimum delay, minimum stops) confidently into a timely 

observable, explicit controllable variable. This study proposes a new measurement to evaluate the 

network performance by directly translating general delay minimization into the maximization of 

intersection throughput based on Lyapunov optimization and then designing efficient traffic 

control algorithms, combining traffic theory and control theory with the reinforcement learning 

method. 

The Lyapunov optimization is introduced in queuing control problems to reduce the impact of 

inaccurate prediction and increase the robustness to queuing. The state of the system is the total 

number of vehicles and stopped vehicles on each incoming and outgoing lane. The action is 

designed timing plan including four actions. The reward for the intersection is the backpressure to 

reduce the imbalance across the network queues. The Double DQN was adopted as a function 

approximator for a higher accuracy. The result shows that the RL-Backpressure performs better 

than fixed-time, DORAS-Q, MaxPressure, Backpressure, and RL-MaxPressure under varying 

volumes, especially under high volumes. RL based algorithm have overall good performance in 

terms of total delay in the medium and high-volume scenarios. Also, the performance of the 

algorithms with the addition of reinforcement learning algorithms improves for the corresponding 

non-reinforcement learning algorithms. Considering the truck flow may increase the simulation 

may increase the total delay at the intersection. The higher the truck volume percentage, the more 

delay driver may experience at the intersection with the area. The average travel time in the signal 

intersection of the grid network is higher than that of the arterial case due to the coordination of 

surrounding signals. Besides, the travel time and backpressure are closely correlated. As the 

pressure gradually approach to zero, the travel time also gradually decreases.  

The addition of truck volume may increase the overall delay compared with the pure passenger 

flow case. Truck volume may bring more impact or turbulence on the downstream traffic volume, 

which may decrease the pressure series algorithm’s performance in the low volume and low truck 

percentage scenarios. However, RL-BackPressure is still robust in the high volume and high truck 

volume percentage case. 

There are a few limitations to this study. First, the RL-BackPressure's performance is not 

outstanding for light traffic loads in the case of both arterial and gird networks. It worth 
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investigating how to improve the algorithm when little network effect exists. Second, a conversion 

factor may not fully represent trucks’ characteristics. Considering detailed vehicles specific 

characteristic and performance may facilitate a better comprehensive study and robust traffic 

signal control algorithm in future studies. It may be necessary to incorporate Monte Carlo tree 

search into the algorithm to increase its robustness under various scenarios. 
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