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EXCUTIVE SUMMARY 

Freight traffic, particularly when it’s significant in proportion, affects the performance of the road 

network in a more sensitive and significant way compared to other types of traffic, in the aspects 

of mobility, environment, and safety due to the complexity of characteristics of the resulting 

mixed-class traffic. Trucks need extra distance and time for deceleration and acceleration, and their 

interactions with conventional vehicles can present more uncertainty to the traffic due to their 

lengths and speeds. Therefore, a traffic bottleneck appears more easily on a road segment or 

intersection where freight traffic is significant. Therefore, the research insight into the control and 

operation of significant freight traffic is necessary. It has been shown in the research of FMRI’s 

first-year project that the coordination of signals fails when the demand is composed of a large 

portion of trucks. Strategies have been developed in the FMRI second-year project to formulate 

multiple trucks’ trajectories to pass consecutive signals individually and cooperatively considering 

mixed traffic conditions. The stability problem of vehicle streams has been studied in the third-

year project.  

With the development of artificial intelligence technologies, intelligent agents can learn from 

historical experiences by exploring the knowledge in their environment. Some researchers have 

implemented neural network-based methods to learn driving behaviors. A research question is: 

Other than applying active control, as we did in the previous research, is it possible for autonomous 

vehicles to learn from the experiences, while keeping safety and one step further, reaching the 

optimal performances in our concerned scenarios? Compared to automated controllers that have 

been widely developed, AI algorithms have seldom been studied due to their computation speed 

and the black-box structure that has not been widely validated in vehicle control. Aside from on 

the freeway, the performance under different traffic scenarios has not been analyzed.  Therefore, 

looking for insight into the algorithm is valuable work, and a piece of exploratory research is 

proposed to operate vehicles (trucks) using artificial intelligence technologies. The research has 

developed a model to provide trajectories given initial status for trucks through a neural network-

based model, and the experience for the learning is from the results of optimized models we have 

developed so far. The well-trained AI model lets trucks drive with trajectories that are close to 

optimal control trajectories and ensures collision avoidance for all the vehicles. 

 

 

 

 

 



 

8 

 

1. INTRODUCTION 

1.1  OVERVIEW 

Ensuring the safe and efficient operation of trucks has always been a curial problem, particularly 

when trucks make a significant portion of the traffic. When solving the problem of trucks 

approaching signals in an urban street, current methods are to use connected and automated 

vehicles (CAVs) technology while the controllers are model-based active controllers. However, 

more solutions are expected especially when Artificial intelligence (AI) technology becomes 

more mature.  

 

The applications of CAVs or automated vehicles (AVs) in a traffic system have been studied in 

the last few years. CAVs can react, communicate, or make cooperative decisions regarding the 

environment such as surrounding vehicles and traffic facilities with the help of vehicle-to-vehicle 

(V2V) or vehicle-to-infrastructure (V2I) communication technologies. Adaptive Cruise Control 

(ACC) and Cooperative Adaptive Cruise Control (CACC) take advantage of the V2V 

communications so that vehicles can drive at a harmonized speed with short headways, 

addressing some issues that may occur for HVs such as mobility, fuel efficiency and, safety 

issues (Wang et al., 2018). When only considering the longitudinal direction, the design of a 

CACC system is usually based on a vehicle dynamics control strategy. Staring from ACC, 

vehicle dynamics are modeled by an optimal control framework to maintain speed while 

reducing emissions. When it comes to CACC, constant longitudinal spacing or headway should 

also be maintained (Dey et al., 2015) (Xiao et al., 2023). Among all the objectives, the mobility 

of the traffic, fuel efficiency, and the stability of the traffic are the major concerns (Wang et al., 

2018). 

 

In some studies, the platoon of CAVs is usually cooperatively considered. For example, a mixed-

integer linear programming (MILP) based model is used to optimize vehicle trajectories as well 

as the traffic signal at isolated signalized intersections. The trajectories are generated by optimal 

control, car-following models, and lane choice models (Xiao et al., 2021; Yu et al., 2018). A 

Predictive Cruise Control method is used to control vehicles when traveling through multiple 

consecutive intersections to save fuel and CO2 emissions (Asadi and Vahidi, 2010). A nonlinear-

programming-based method to control a CAV platoon is designed to pass multiple intersections 

to maximize throughput and comfort (Liu et al., 2019).  

 

A comprehensive survey by (Rios-Torres and Malikopoulos, 2016) reviewed various approaches 

to coordinate CAVs at intersections, on-ramps. The methods include both centralized and 

decentralized techniques, using either heuristic rules or optimization and control algorithms to 

minimize travel time, fuel consumption, or other metrics. According to a comprehensive survey 

by (Gholamhosseinian and Seitz, 2022), various strategies for cooperative intersection 

management has been reviewed including reservation-based approaches, auction-based 

approaches, and decentralized approaches. Coordination at both signal and non-signal is studied 

considering a fully cooperative intersection management (CIM) that contributes to both traffic 
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safety and efficiency (Chen and Englund, 2015). The way to model interaction include space and 

time discretization and trajectory Modeling.  

 

Truck trajectory generation problem has become a widely studied topic so that vehicle drives 

following a trajectory in difference conditions for the purpose of mobility, safety, and fuel-

efficiency etc.  

 

Artificial intelligence-based model can provide trajectories or car following strategies for 

vehicles regardless of domain knowledge (Naveed et al., 2021). For example LSTM model is 

developed to predict surrounding vehicle trajectories incorporating the spatial-temporal attention 

mechanisms (Lin et al., 2021). Imitation learning or inverse reinforcement learning is applied to 

help with decision making process in AVs (Gao et al., 2018). 

 

The longitudinal control strategies have been developed to improve the mobility to mitigate the 

stop-and-go waves and other adverse traffic effects on freeways (Li et al., 2021) . Although 

longitudinal control strategies in the freeway environment have been well studied, the existence 

of traffic signals in an urban area makes longitudinal control strategies of AV significantly 

different from those in the freeway environment. Many previous studies concerned the strategies 

for vehicles approaching an isolated intersection (Kuderer et al., 2015; Tohfeh and Fakharian, 

2015; Zhang et al., 2018) .  

 

This research proposes a neural network-based model for the longitudinal trajectories of 

automated trucks, as an enhancement to or an alternative approach for traditional active control. 

The information is learned from expert experiences to ensure safety and optimal performance. 

The expert trajectories are generated from optimal control models that optimize travel time or 

emission respectively. The output is a well-trained model that generates trajectories for trucks 

that with small errors compared to trajectories generated by optimal control. Since no real-world 

data are available, the expert demonstrations data used for training the model is generated from 

the simulation and the proposed method is also tested in numerical cases.  
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2. METHODOLOGY 

The longitudinal control for CAVs follows a step: the optimal control is applied to generate the 

expert trajectories for vehicles in scenarios as show in Figure 1. AI technique Neural Network is 

utilized to learn the expert trajectories and produce new trajectories based on initial status of 

vehicles.  

 

 

  
 

Figure 1 Schematic concept: AV equipped with AI. 

 

 

 

2.1 ARTIFICIAL INTELLIGENT DESIGN FOR VEHICLE 

TRAJECTORIES 

The proposed approach integrates optimal control, AI, and traffic flow modeling to develop an 

intelligent system for managing vehicle traffic. Figure 2 illustrates the framework of 

methodology, which consists of three main components: 
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Figure 2 Flow chart of the research scope and methodology 

 

1. Optimal Control Results This component utilizes a car-following optimal control model. 

It incorporates:  

o Maximum acceleration: Defining the upper limit of vehicle acceleration 

o Comfortable deceleration: Ensuring passenger comfort during braking 

o Expert trajectories: Pre-computed optimal paths for vehicles 

2. Label Generation This stage prepares the input data for the neural network. It considers 

the initial status for trucks, including:  

o Initial speed: The velocity of the truck at the start of the scenario 

o Green left: The remaining time of the green signal phase 

o Distance: The initial position of the truck relative to the intersection 

3. Neural Network The core of the system is a neural network that acts as a controller for 

updating the headways of Autonomous Vehicles (AVs). It processes the following:  

o Inputs: Initial status for trucks (from the Label component) 

o Outputs: New trajectories 
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For expert trajectory generation, optimal control method is formulated. When an individual 

vehicle is traveling within one block between two intersections, its state including position and 

speed is known. The problem is decomposed into different scenarios and is then scaled towards 

multiple vehicles along consecutive intersections. The constraints from the longitudinal position 

and feasible arrival moments of a vehicle with the presence of signals are mathematically 

described.  

 

 

The system writes with a linear time-invariant system (LTI): 

𝑥𝑛,𝑖(𝑡) = 𝐴𝑥𝑛,𝑖(𝑡) + 𝐵𝑢𝑛,𝑖(𝑡) (1) 

A = [
0 1
0 0

] B = [
0
1
] (2) 

 

where the control variable 𝑢𝑛,𝑖 is the acceleration of the vehicle. The cost function to ensure 

optimal performances is defined as follows considering the comfort and terminal performances: 

𝐽𝑛,𝑖 = min ∫ 𝐿 (𝑥𝑛,𝑖(𝑡), 𝑢𝑛,𝑖(𝑡)) 𝑑𝑡 +

𝑇𝑛,𝑖

𝑡=0

Φ(𝑇𝑛,𝑖, 𝑥𝑛,𝑖(𝑇𝑛,𝑖)) (3) 

where the ending time or the control horizon 𝑇𝑛,𝑖 is a variable which is determined 

systematically. It is then discussed in 3.2, based on different scenarios. The running cost is set as 

an instantaneous cost showing the penalties concerning comfort. It is expressed as the quadratic 

term of acceleration. 

𝐿 =
1

2
𝑢𝑛,𝑖

2 (4) 

 

The terminal cost gives penalties so that the final states can approach desired values (terminal 

speed and terminal distance).   

𝛷 = 𝑤1(𝑥𝑛,𝑖
(1)(𝑇𝑛,𝑖) − 𝑙

∗
𝑛,𝑖)

2
+ 𝑤2(𝑥𝑛,𝑖

(2)(𝑇𝑛,𝑖) − 𝑣
∗
𝑛,𝑖)

2
(5) 

 

  

Again, 𝑇𝑘,𝑖 will be determined systematically. Weighing factors 𝑤1 and 𝑤2 show the penalty for 

the state deviation from the terminal speed and the terminal distance at the end of the horizon.  

 

2.2 EXPERT TRAJECTORY GENERATION SOLUTION 

The desired speed is set the terminal speed at each intersection for each vehicle 𝑣∗𝑛,𝑖 = 𝑣0. The 

block length between two intersections is used as terminal distance 𝑙∗𝑛,𝑖 = 𝑙𝑖.The problem then 

writes:  

𝐽𝑛,𝑖 = ∑ (𝑢𝑛,𝑖𝑡+𝑘−1
2)

𝑇

𝐾=1

+ 𝑤1 (𝑥𝑛,𝑖
(2)

𝑇

2
− 2𝑥𝑛,𝑖

(2)
𝑇
𝑣𝑛,𝑖

∗ + 𝑣𝑛,𝑖
∗2) + 𝑤2 (𝑥𝑛,𝑖

(1)
𝑇

2
− 2𝑥𝑛,𝑖

(1)
𝑇
𝑙∗ + 𝑙𝑛,𝑖

∗2) (6) 

 

s.t. 
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(𝑥𝑛,𝑖, 𝑢𝑛,𝑖) ∈ 𝛺 ∩ 𝑈 (7) 

 

𝛺 represents the constraints from vehicle dynamics, including the limitation from maximal 

speed, maximal acceleration, distance, etc. 𝑈 represents the physical constraints from the 

preceding vehicle during the period when it follows preceding vehicle 𝑓𝑛,𝑖.  
 

𝛺 = {𝑥𝑛,𝑖𝑡+1 = 𝐴𝑑𝑥𝑛,𝑖𝑡 + 𝐵𝑑𝑢𝑛,𝑖𝑡, 𝑢𝑛,𝑖𝑡 ∈ (𝑢𝑛,𝑖,𝑙𝑏 , 𝑢𝑛,𝑖,𝑢𝑏), 𝑥𝑛,𝑖
(1) ∈ (0, 𝑙𝑖), 𝑥𝑛,𝑖

(2) ∈ (𝑣𝑛,𝑖,𝑙𝑏 , 𝑣𝑛,𝑖,𝑢𝑏)} (8) 

𝑈 = {𝑠𝑛,𝑖 ≤ 𝑠𝑛−1,𝑖 + 𝑑𝑠 + 𝑑𝑣, 𝑡 ∈ (0, 𝑓𝑛,𝑖)} (9) 

 

 

where 𝑑𝑠 is a safe distance that can ensure safety and 𝑑𝑣 is the vehicle length;  𝑓𝑛,𝑖 is the duration 

of following, determined differently in different scenarios in upper-level control. 

 

The linearly constrained LQ (linear quadratic) optimal control problems are converted to discrete 

versions and solved by quadratic programming. The objective function becomes: 

 

𝐽 =
1

2
∑ 𝑥𝑡+𝑘

𝑇 𝑄𝑡+𝑘

𝑇

𝐾=1

𝑥𝑡+𝑘 + 𝑢𝑡+𝑘−1
𝑇 𝑅𝑡+𝑘𝑢𝑡+𝑘−1 + 𝑥𝑁

𝑇𝑄𝑁𝑥𝑁 (10) 

 

Matrices 𝑄, 𝑄𝑁 and R are diagonal matrices to ensure the positive-definiteness. They are set as 

 

𝑄 = (
0 0
0 0

) , 𝑅 = 1, 𝑄𝑁 = (
𝑤1 0
0 𝑤2

) (11) 

 

 

The optimal control problem is implemented in linearly constrained LQ (linear quartic) optimal 

control problem on the affine subspace in a discrete time system. the parameters of original LTI 

system is transferred as their discrete version and the objective function is:  

min 𝐽1 = ∑ 𝑥𝑡+𝑘
𝑇 𝑄𝑡+𝑘

𝑡𝑃

𝐾=1

𝑥𝑡+𝑘 + 𝑢𝑡+𝑘−1
𝑇 𝑅𝑡+𝑘𝑢𝑡+𝑘−1 + 𝑥𝑁

𝑇𝑄𝑁𝑥𝑁 

= ∑
1

2
(𝑢𝑡+𝑘−1

2 + 𝑤1𝑥2,𝑡+𝑘𝑢𝑡+𝑘−1)

𝑡𝑃

𝐾=1

+ 𝑤2(𝑥
2
2𝑇
− 2𝑥2𝑇𝑣

∗ + 𝑣∗2) + 𝑤3(𝑥
2
1𝑇
− 2𝑥1𝑇𝐿

∗ + 𝐿∗2) 

matrices Q and R are diagonal matrices to ensure the positive-definiteness. 

s.t. 
(𝑥, 𝑢) ∈ Ω∩𝑈 

where  

Ω = {(𝑥, 𝑢)𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑥𝑡+1 = 𝐴𝑑𝑥𝑡 + 𝐵𝑑𝑢𝑡}  

𝑈 = {
(𝑑𝑡+𝑖

𝑗)𝑥𝑡+𝑖 ≤ 𝑐𝑖
𝑗

𝑢𝑡 ∈ (𝑢𝑙𝑏 , 𝑢𝑢𝑏)
 

Defining y = [𝑥1,𝑡+1 , … , 𝑥1,𝑡+𝑡𝑃 , 𝑥2,𝑡+1 , … , 𝑥2,𝑡+𝑡𝑃 , 𝑢2,𝑡+1 , … , 𝑢2,𝑡+𝑡𝑃]
𝑇
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and defining a quadratic cost function in the objectivations, the problem is transferred to a 

quartic programming. (in appendix A) 

In the quartic programming, the matrixes are formulated as follows: 

Hessian matrix H= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤3

0 0

0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤2

1

4
𝑤1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

4
𝑤1

0

1

4
𝑤1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

4
𝑤1

1

2
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

C = [0,… 0,−2𝑤3𝐿
∗⏟        

𝑝

0,… 0,−2𝑤2𝑣
∗⏟          

𝑝

0,… 0⏟  
𝑝

] 

A=

[
 
 
 
 
 
 
 
 
 
 
 
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1]

 
 
 
 
 
 
 
 
 
 
 

      and     B=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑥2,𝑢𝑏
⋮

𝑥2,𝑢𝑏
}𝑝

𝑥2,𝑙𝑏
⋮
𝑥2,𝑙𝑏

}𝑝

𝑢𝑢𝑏
⋮
𝑢𝑢𝑏

}𝑝

𝑢𝑙𝑏
⋮
𝑢𝑙𝑏
}𝑝

]
 
 
 
 
 
 
 
 
 
 
 
 

 

Aeq=

[
 
 
 
 
 
 
 
 
 
 
 
1 0 … 0
0 0 … 0
0 0 … 0

      
0 0 … 0
1 0 … 0
0 0 … 0

          
0 0 … 0
0 0 … 0
1 0 … 0

−𝑎11 1 … 0
0 −𝑎11 1 0
⋮ 0 −𝑎11 1
0 … 0 0

−𝑎12 0 … 0
0 −𝑎12 0 0
⋮ 0 −𝑎12 0
0 … 0 0

−𝑏1 0 … 0
0 −𝑏1 0 0
⋮ 0 −𝑏1 0

0 … 0 0
−𝑎21 0 … 0
0 −𝑎21 0 0
⋮ 0 −𝑎21 0
0 … 0 0

−𝑎22 1 … 0
0 −𝑎22 1 0
⋮ 0 −𝑎22 1
0 … 0 0

−𝑏2 0 … 0
0 −𝑏2 0 0
⋮ 0 −𝑏2 0

0 … 0 0 ]
 
 
 
 
 
 
 
 
 
 
 

and Beq=

[
 
 
 
 
 
 
 
 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑣
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑢
0
⋮
0
}𝑝

0
⋮
0
}𝑝

]
 
 
 
 
 
 
 
 

 

 
 

 

The model predictive control problem can be implemented in linearly constrained LQ (linear 

quartic) problem on the affine subspace in a discrete time system. the parameters of original LTI 

system is transferred as their discrete version and the objective function is:  
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min 𝐽2 = ∑ 𝑥𝑡+𝑘
𝑇 𝑄𝑡+𝑘

𝑡𝑃

𝐾=1

𝑥𝑡+𝑘 +𝑢𝑡+𝑘−1
𝑇 𝑅𝑡+𝑘𝑢𝑡+𝑘−1 

Where 𝑄𝑡+𝑘 = [
𝛼1,𝑡+𝑘 0
0 𝛼2,𝑡+𝑘

] and 𝑅𝑡+𝑘 = 𝛽𝑡+𝑘 

= ∑𝛼1,𝑡+𝑘(s𝑡+𝑘 − 𝑠
∗
𝑡+𝑘)

2 + 𝛼2,𝑡+𝑘

𝑡𝑃

𝐾=1

Δv𝑡+𝑘
2 + 𝛽𝑡+𝑘𝑢𝑡+𝑘−1

2 

s.t.` 
(𝑥, 𝑢) ∈ Ω∩𝑈 

where  

Ω = {(𝑥, 𝑢)𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑥𝑡+1 = 𝐴𝑑𝑥𝑡 + 𝐵𝑑𝑢𝑡}  

{
(𝑑𝑡+𝑖

𝑗
)𝑥𝑡+𝑖 ≤ 𝑐𝑖𝑗

𝑢𝑡 ∈ (𝑢𝑙𝑏, 𝑢𝑢𝑏)
 

Defining a new variable in quartic programming, y = 

[𝑠𝑡+1 ,… , 𝑠𝑡+𝑡𝑃 , 𝑠
∗
𝑡+1 ,… , 𝑠∗𝑡+𝑡𝑝, Δ𝑣𝑡+1 , … , Δ𝑣𝑡+𝑡𝑃 , 𝑢𝑡+1 ,… , 𝑢𝑡+𝑡𝑃]

𝑇
  

In the quartic programming, the matrixes are formulated as follows: 

Hessian matrix H= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛼1,𝑡+1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼1,𝑡+𝑘

−𝛼1,𝑡+1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝛼1,𝑡+1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

−𝛼1,𝑡+1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝛼1,𝑡+1

𝛼1,𝑡+1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼1,𝑡+𝑘

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

𝛼2,𝑡+1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼2,𝑡+𝑘

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

                     
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

                
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

𝛽𝑡+1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝛽𝑡+𝑘]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

C = [0,… 0,0⏟    
𝑝

0,… 0,0⏟    
𝑝

0,… 0⏟  
𝑝

0,… 0⏟  
𝑝

] 
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A=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      and     B=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑠𝑢𝑏
⋮
𝑠𝑢𝑏

}𝑝

𝑠𝑙𝑏
⋮
𝑠𝑙𝑏
}𝑝

𝑠𝑢𝑏∗

⋮
𝑠𝑢𝑏∗

}𝑝

𝑠𝑙𝑏∗

⋮
𝑠𝑙𝑏∗

}𝑝

∆𝑣𝑢𝑏
⋮

∆𝑣𝑢𝑏
}𝑝

∆𝑣𝑙𝑏
⋮

∆𝑣𝑙𝑏
}𝑝

𝑢𝑢𝑏
⋮
𝑢𝑢𝑏

}𝑝

𝑢𝑙𝑏
⋮
𝑢𝑙𝑏
}𝑝

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Aeq=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 … 0
0 0 … 0
0 0 … 0
0 0 … 0

     

0 0 … 0
1 0 … 0
0 0 … 0
0 0 … 0

         

0 0 … 0
0 0 … 0
1 0 … 0
0 0 … 0

−𝑎11 1 … 0
0 −𝑎11 1 0
⋮ 0 −𝑎11 1
0 … 0 0

𝑎11 −1 … 0
0 𝑎11 −1 0
⋮ 0 𝑎11 −1
0 … 0 0

−𝑎21 1 … 0
0 −𝑎21 1 0
⋮ 0 −𝑎21 1
0 … 0 0

−𝑎21 0 … 0
0 −𝑎21 0 0
⋮ 0 −𝑎21 0
0 … 0 0

𝑎21 1 … 0
0 𝑎21 1 0
⋮ 0 𝑎21 1
0 … 0 0

0 0 … 0
0 0 … 0
0 0 … 0
0 0 … 0

  

0 0 … 0
0 0 … 0
0 0 … 0
1 0 … 0

−𝑏1 1 … 0
0 −𝑏1 1 0
⋮ 0 −𝑏1 1

0 … 0 0
−𝑏2 1 … 0
0 −𝑏2 1 0
⋮ 0 −𝑏2 1

0 … 0 0 ]
 
 
 
 
 
 
 
 
 
 
 
 

and 

Beq=

[
 
 
 
 
 
 
 
 
 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_r𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠∗

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_rv
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑢
0
⋮
0
}𝑝

0
⋮
0
}𝑝

]
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3. EXPERIMENTS AND RESULTS 

3.1 AI METHOD DEVELOPMENT 

This part applies a Neural network model for vehicle trajectories at signalized intersections using 

the concept of imitation learning. The methodology consists of four main components: data 

generation to get expert trajectories, model architecture, training process, and evaluation. 

1. Data Generation 

A custom trajectory generator was implemented to create a diverse dataset of vehicle trajectories. 

The generator considers the following parameters: 

• MAX_SPEED 

• MAX_ACCELERATION 

• MAX_DECELERATION 

• SIGNAL_DURATION 

TIME_STEP is set as 1 s. The expert trajectory function simulates vehicle movement based on 

initial conditions and signal timing. The generate_dataset function creates 1000 trajectories with 

randomized initial distances (0-400 m), initial speeds (15-30 m/s), and remaining green signal 

durations (10-30 s). 

2. Model Architecture 

A feed-forward neural network was designed using the Keras framework. The architecture 

consists of: 

• Input layer: 4 neurons (initial distance, initial speed, signal green time left, time step) 

• 4 hidden layers: 256 neurons each, with ReLU activation 

• Dropout layers: 20% dropout rate after each hidden layer 

• Output layer: 1 neuron (predicted distance) 

The model uses mean squared error (MSE) as the loss function and the Adam optimizer with a 

learning rate of 0.001. 

3. Training Process 

The training process involves the following steps: 
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a) Data preprocessing: Input features are normalized. b) Model compilation: The neural network 

is compiled with the specified architecture and hyperparameters. c) Early stopping: To prevent 

overfitting, early stopping is implemented with a patience of 10 epochs. d) Training: The model 

is trained for a maximum of 200 epochs with a batch size of 64. 

4. Evaluation 

The trained model is evaluated using the following methods: 

a) Visual comparison: True and predicted trajectories are plotted for 10 different scenarios with 

varying initial conditions. b) Error metrics: Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and R-squared (R²) are calculated for each scenario and averaged across all 

scenarios. c) Error distribution: A histogram of prediction errors is plotted to visualize the error 

distribution. 

3.2 RESULTS AND SUGGESTIONS 

Results present generated longitudinal trajectories of automated trucks (Predicted Trajectory), 

trained on expert demonstrations (True Trajectory) derived from optimal control models. 

 

Table 1 Initial status of vehicles Case 1  

MAX_SPEED (m/s) 10 

MAX_ACCELERATION(m/s^2) 2 

MAX_DECELERATION (m/s^2) 2 

TIME_STEP (sec) 1 

SIGNAL_DURATION (sec) 30 

 

 
Figure 3 Model loss Case 1 
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Figure 4 Error distribution of vehicle trajectories Case 1 

 
Figure 5 Trajectory generated and their true counterparts Case 1 
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These results demonstrate the model's ability in expert-generated trajectories under various 

conditions. The model's performance was evaluated across 10 distinct scenarios, with the 

following average errors: 

 

Average Mean Absolute Error (MAE): 16.42 

Average Root Mean Squared Error (RMSE): 20.04 

Average R-squared (R2): 0.97 

 

The high R² value indicates that the model accounts for approximately 97% close to the true 

trajectories, suggesting a strong correlation between predicted and optimal paths. The MAE of 

16.42 m represents the average absolute deviation between predicted and true trajectories. 

Considering the approaching range of 0-400 m, this error is relatively small, indicating good 

overall accuracy. The RMSE of 20.04 m suggesting the presence of occasional deviations. 

 

Visual inspection can reveal close alignment between predicted and true trajectories across most 

scenarios, particularly in the initial phases. Some divergences are observed in the latter stages of 

certain scenarios (e.g., Scenarios 3 and 8), which likely contribute to the observed error metrics 

and may need further investigation. 

 

 

Table 2 Initial status of vehicles Case 2 

 

MAX_SPEED (m/s) 25 

MAX_ACCELERATION(m/s^2) 2 

MAX_DECELERATION (m/s^2) 2 

TIME_STEP (sec) 1 

SIGNAL_DURATION (sec) 40 
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Figure 6 Model loss Case 2 

 
Figure 7 Error distribution of vehicle trajectories Case 2 
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Figure 8 Trajectory generated and their true counterparts Case 2 

 

 

In case 2 and case 3, the loss decreases rapidly in the initial epochs and then stabilizes, 

suggesting that the model converged successfully. The final loss value is relatively low, 

indicating good overall performance of the trained model. 

 

The histogram is right-skewed, with the majority of errors concentrated near zero. This suggests 

that the model's predictions are generally accurate, with a higher frequency of small errors and 

fewer large errors. 

 

The predicted trajectories closely follow the true trajectories in most cases for both case 2 and 

case 3, indicating that the neural network model has learned to effectively mimic the vehicle 

behavior. There are some minor deviations, particularly in the middle sections of some 

trajectories, but overall, the predictions appear to be quite accurate. 
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Table 3 Initial status of vehicles Case 3  

 

MAX_SPEED (m/s) 30 

MAX_ACCELERATION(m/s^2) 2 

MAX_DECELERATION (m/s^2) 2 

TIME_STEP (sec) 1 

SIGNAL_DURATION (sec) 40 

 

 

The consistent performance across diverse scenarios suggests robust generalization capabilities 

of the neural network model. The model demonstrates strong potential in generating accurate 

longitudinal trajectories for automated trucks.  

 

 
Figure 9 Model loss Case 3 
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Figure 10 Error distribution of vehicle trajectories Case 3 

 
Figure 11 Trajectory generated and their true counterparts Case 3 
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4. CONCLUSIONS: 

The neural network model's loss decreased quickly during training and stabilized at a low value, 

indicating efficient learning and good overall performance. This suggests that the chosen 

architecture and hyperparameters were appropriate for the task. The closeness of model to 

expert-generated trajectories indicates its potential as a computationally efficient alternative to 

traditional optimal control methods.  

 

While the model demonstrates strong performance in simulated environments, it is important to 

note that these results are based on numerically generated data. Real-world validation remains a 

critical next step to assess the model's practical applicability and resilience to environmental 

variabilities not captured in simulation. 

 

In conclusion, the proposed model exhibits strong performance in replicating optimal 

longitudinal trajectories for automated trucks. The high R² value, coupled with relatively low 

MAE and RMSE, underscores the model's potential as a viable approach for generating safe and 

efficient truck trajectories. The success of the neural network in predicting vehicle trajectories 

demonstrates that AI can play a crucial role in enhancing the decision-making capabilities of 

CAVs. By accurately forecasting trajectories, CAVs can better anticipate traffic flow and 

optimize their own paths, especially when the default algorithm fails. Future work should focus 

on improving the model to address errors in later trajectory stages and validating its performance 

in real-world scenarios.  
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