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EXCUTIVE SUMMARY 

Regulated by the Hours-of-Service law, truckers must find places to rest during their duty 

(mainly driving) hours periodically for the sake of safety. Without an adequate parking spot, 

truckers are often found either to park at illegal locations or violating the driving hours. Truck 

parking is an issue of national concern. The parking capacity provision is due to both the 

public and private sectors. A key point is to understand the truck parking demand and come 

up with an adequate parking capacity supply to ensure availability of parking space when 

needed by considering traffic peaking, network topology and driver's preferred driving hours 

when it's within the legal range.  

The objective of this study is to continue on the success of Phase I of this effort by studying 

the relation between truck volume and parking space density in a simulation environment as 

phase I. The truck space availability issue is essentially one between volume and density 

subject to boundary conditions. In phase I, the team developed a computer simulation 

program to numerically show the relationship between volume, driving behavior, and parking 

capacity need, which illustrates the inherent relationship between behavior, truck volume, and 

parking capacity needs. Based on the vast literature search in Phase I, the study borrows some 

ideas outside the transportation field to analytically derive the truck parking density model 

which inherent reveals the relationship between truck volume, driving behavior and truck 

parking capacity need. 

This study models the parking demand density long the highway and discuss location decision 

of the parking areas. Several closed form formulas of estimating truck parking density are 

developed based on the renewal process. The formulas are further improved by considering 

road end effect, network effect and different probability distribution of driving and resting. 

We use data from the Florida Department of Transportation to illustrate the use and 

implications of our proposed models. We hope the results may facilitate the understanding 

and solution of the truck parking issues for this major mode of freight transportation. 
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1.0 INTRODUCTION 

Trucking transportation carries the most amount of goods in terms of value. It employs a large 

number of trucks running on the nation's highway system compared to other modes such as 

rail and waterway. Truckers often need to drive long hours for the shipping services, subject 

to fatigue and fatal crashes.  For the sake of safe and efficient operations, U.S. truck drivers 

are regulated by the Hours-of-Services law, which limits truckers' consecutive driving time up 

to 8 straight hours and not to drive exceeds 11 hours within any consecutive 24 hours of tthe 

time. Thus, truck drivers must find a rest area to comply with the regulation during their trips, 

especially for those drivers on inter-city travels. The hours-of-service law ensures that drivers 

be in good condition while driving. However, Due to the unavailability of truck parking space 

at locations, it is needed, truckers are often found parking illegally on highway ramps or other 

unsafe spots. Or some truckers are caught driving beyond the hours limit, which significantly 

contributes to the highway's fatal rate. As a result, sufficient truck parking capacity provision 

along the highways is essential. Almost every state has conducted truck parking studies in an 

effort mainly to address the truck parking space shortage problem. The difficulty resides in 

the fact that truck volumes, although varies across regions, fluctuate with time of year and 

time of day driven by economic activities even in one region. The intuitive observation is that 

a higher volume demands more parking space statistically. The truck parking issues have 

caught wide attention as a national concern for many years. States and Federal's truck parking 

study has been surveyed in the Phase I report. Most of the studies conduct surveys to the truck 

drivers. The results help the decision-makers to know the situation better and start solving the 

problem. However, most of the study focuses on their unique local characteristics. They have 

not put forward a general or theoretical solution methodology to identify the place of suffering 

parking shortage or estimate the number of parking spots needed. 

In phase one, we tried to build a pure simulation method to study the effect of hours-of-

service regulation on truck drivers' behaviors. The model simulates truck drivers' behavior and 

adjusts different parameters, such as the interval between parking facilities, various 

distribution of truck drivers' starting time, and truck speed. We discover the effects and extent 

of the effect of the above-mentioned parameter to the number and location of the parking 

facilities. The objective of this study is to continue the success of Phase I of this effort by 

continuing to study the relation between truck volume and parking space density in a 

simulation environment as phase I. 

The truck parking space availability issue is essentially one of balance between truck volume 

and parking density subject to boundary conditions. In phase two, we try to model the truck 

drivers' behaviors in a theoretical way. In this phase, we model the problem from truck 

drivers' perspective and aim to associate the location and capability of parking facilities with 

the remaining driving time. In a statistical way of modeling, it is easy to capture the general 

effect of Hour-of-Service regulation upon the interval and capacity of truck parking facilities. 

The target of the second phase is to unveil the parking space density and truck volume 
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relationship. To be general and capture the essentials of the relationship, we give up 

considering the detailed factors of the highway segments and use a statistical way to model it. 

In addition, Phase I has also led to a literature review that surprisingly identifies cases in 

telecommunication areas that model the relationship between cell phone travelers’ volume 

and ground station service capacity and spacing along a highway. However, that study is 

inherently different from this truck parking problem, although it sheds light to the problem. 

Our goal in Phase II is to build on the literature reviewed and also utilize the simulation tool 

developed in Phase I to analytically derive the inherent analytical relationship between truck 

volume, driving behavior and truck parking capacity need in a hope that policy makers may 

use to examine adequacy of truck parking space within their jurisdiction areas. 
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2.0 LITERATURE REVIEW 

We have summarized much literature that use survey method to identify and improve truck 

parking shortage in the Phase I report. As indicated before, we will further focus on the 

theoretical modeling literature in this report. There is generally a scant literature that develop 

general analytical methodologies for this problem over the past decades. We are providing a 

brief review of the major results relevant to our study here. 

Simulation is a common method to discover the trucker's behavior and the interaction with the 

parking spot. Steenberghen et al. use multinomial Logit model to describe parking behaviors 

and develop an agent-based model (ABM) used to simulate the local parking and traffic 

situation under different parking-management conditions (Steenberghen et al., 2012). 

Munuzuri et al. develop a microscopic traffic simulator parking planning related to freight 

transport and private traffic in the urban area (Munuzuri et al., 2002). Nourinejad et al. 

proposes a econometric parking choice model to evaluate the potential impact of truck 

parking in the urban area. The model shows that reserved freight parking may reduce mean 

searching time for commercial vehicles in urban area, but it may result in higher search time 

and walking time for passenger car drivers (Nourinejad et al., 2014).  

Srivastava et al. develop an online GIS survey tools for collecting the location information of 

areas with truck parking capacity shortages. They adopt location clustering algorithm to the 

data and find that outskirts of major urban areas have a higher probability of suffering from 

truck parking shortages, reflecting the need of staging for next day delivery (Srivastava et al., 

2012). 

There is limited literature focusing on developing an analytical method of truck parking 

problems. In 1996, FMCSA evaluated the adequacy of rest parking facilities and regulation in 

48 states along interstate highways by observing driver’s actual rest time and driving hours by 

interviewing industry workers (Trucking Researcch Institute, 1996). As the pioneer research 

on the truck parking problem, the study identified primary demand-related factors and supply-

related factors based on the parking usage of the public rest areas. A linear capacity utilization 

model was developed and calibrated to assess the utilization and potential needs for truck 

parking at individual rest areas. 

As the successor of the previous report, Pécheux et al. developed analytical models to 

estimate the demand for truck parking spaces, which is widely used in later master plan and 

studies (Pécheux, et al., 2002). They first assessed the status of nationwide public rest area 

and then calibrates the truck parking demand model for a designated highway segment while 

ignoring the association with a single parking facility’s characteristic such as capacity and 

amenities. The model considers effects brought by seasonal, short-haul to long-haul trucking 
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ratio and time spent at a shipper/receiver, which does shed light to later analytical studies of 

this subject. 

Similar to the United States, the European Union also experiences issues due to the truck 

parking shortage problem. Heinitz et al. (Heinitz et al., 2009) developed a demand modeling 

approach for limited truck parking facilities from the perspective of drivers. Compared to 

prior studies, this study made a stride forward and developed models using varying traffic 

flow instead of average daily traffic. Other papers also proposed various mathematic models , 

including approximate methodology (Jaller et al., 2013), econometric choice model (North 

Jersey Transportation and North Jersey Transportation Planning Authority, 2009) and demand 

modeling ( Garber et al., 2002, Tam et al., 2000). 

There are a few distinct studies that we feel a need to highlight here individually. Koo et al. 

adopted a case specific reasoning approach, and developed a decision support system for 

determining the optimal sizes of  173 new expressway service areas (ESAs) with a goal of 

their profitability (Koo et al., 2014). Richard Arnott (Arnott et al., 1999) first presented a 

stochastic model with focusing on drivers’ search for a vacant parking space in a spatially 

homogeneous metropolis. They examine stochastic stationary-state equilibrium and optima in 

the model. 

Ideas or literature from other fields may shed light on our study problem here, although the 

problems in other fields may appear distinctly different. For example, Massey et al. in the 

telecommunication area modeled the relationship between cell phone travelers volume and 

ground station service capacity and spacing, also along a highway ( Massey et al., 2009). 

Tavafoghi et al. propose a parking capacity prediction method that provide a real-time 

probabilistic forecast of parking occupancy for an arbitrary forecast horizon based on the 

queuing model, time series model and LSTM model (Tavafoghi et al., 2019). We are inspired 

to build a stochastic model to estimate the potential parking needs on any point of a highway. 

The next section introduces the details of the model. 
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3.0 METHODOLOGY 

The truck parking study problem may be re-capped here as follows. Trucks travel on the 

highway from origins to their destinations. Truck drivers are subject to the Hours-of-Service 

regulation as specified at the beginning of the paper and need to stop at rest areas for rest in 

order to comply with the regulation. Rest areas are provided along the highway to truck 

drivers. Trucks may park at an available spot when the drivers feel a need to. The goal of this 

study is to develop a model for the estimation of truck parking capacity needs along the 

highway. To facilitate modeling, we assume trucks enter a freeway after they have traveled a 

known period of time, the length of which follows a probability distribution. The length of 

driving before a break assumes a given probability distribution as well. The rest time a driver 

takes at a rest area is random and also follows a probability distribution. 

3.1 ASSUMPTIONS AND PRELIMINARIES 

The focus of our study here is to model truck parking needs along roadways as related to a set 

of highway and traffic parameters. For the ease of modeling, we start with a disaggregate 

approach that focuses on an individual trucker's operation. 

In this model, the driver only experiences two types of periods alternately: drive and rest. We 

assume the driving time H and rest time R are random and each follows a particular 

distribution, reflecting variations among truckers regarding driving and rest. We model this 

problem by assuming truck traffic happens on a line of highway with infinite length to reach a 

steady state of parking needs.  Along this highway, the driver’s driving time in all the driving 

periods after rests follows i.i.d distribution. So, rest times also follow i.i.d.  The ultimate result 

of the result is expected to be aggregate. This report builds on the basic concept of the renewal 

process. 

3.2 RENEWAL PROCESS 

A renewal process is a point process in which the inter-event intervals are independent and 

drawn from the same probability density (Resnick et al., 2002). More specifically, it is defined 

in theorem 1. 

Theorem 1 Let {Yn} be independent non-negative finite random variables with Yn has a 

Cumulative distribution function (CDF) F, n ≥ 1, and Sn = Y1 + Y2 + ...Yn. Where Sn is called a 

renewal sequence. Each Sn is a renewal epoch or renewal time. yn  is called an inter-arrival 

time or waiting time. The renewal sequence is pure if Y0 = 0 with probability 1. 
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The study of renewal processes can be described by a special type of integral equation known 

as a renewal equation. Renewal equations almost always arise by conditioning on the time of 

the first arrival and by using the defining property of a renewal process—the fact that the 

process restarts at each arrival time, independently of the past. The definition of renewal 

equation is in theorem 2. 

Theorem 2 let 𝑁(𝑡) = ∑ 𝟏0≤𝑆𝑛≤𝑡
∞
𝑛=0 = 𝑚𝑎𝑥{𝑛 : 𝑆𝑛−1 ≤ 𝑡} be a renewal process. It denotes 

the number of renewal epochs in [0, t]. Let V(t) = E(N(t)) be the renewal function. 

It is noteworthy that N(t) > n equivalents to Sn ≤ t, so SN(t)−1 ≤ t ≤ SN(t). Also 𝑉(𝑡) =

𝐸(𝑁(𝑡)) = ∑ 𝑃(𝑁(𝑡) > 𝑛)∞
𝑛=0 = ∑ 𝑃(𝑆𝑛 ≤ 𝑡)∞

𝑛=0 = 𝐸(∑ 1𝑆𝑛≤𝑡
∞
𝑛=0 ) is non-decreasing. For 

proper distribution CDF F(F(t) → 1 as t → ∞), then V (t) → ∞ as t → ∞. From theorem 1 and 

theorem 2, we can see that the distribution of the sum of known random variables is essential. 

Next, we introduce the definition of convolution. 

Theorem 3 Suppose function U is non-negative, non-decreasing and right continuous and 

function g is bounded on finite intervals. Define the convolution 

𝑢 ∗ 𝑔(𝑡) = ∫ 𝑔(𝑡 − 𝑥)𝑈(𝑑𝑥)
𝑡

0

 (1) 

for appropriate function g (usually at least g is bounded on finite intervals). 

If function f and g are density functions for probability distribution F and G, respectively,  

𝐹 ∗ 𝑔(𝑡) = ∫ 𝑔(𝑡 − 𝑥)𝑓(𝑥)𝑑𝑥
𝑡

0

,  𝑡 ≥ 0 (2) 

Equation (2) denotes the density of X + Y if both X and Y are non-negative random variables. 

Then we generalize the idea and introduce the sum distribution of n independent random 

variables. 

Theorem 4 Suppose Xi , Fi, i ≥ 1are independent non-negative random variables. Then Sn = y1 

+ y2 + ...yn ∼ F = F1 ∗ F2 ∗ ... ∗ Fn. If Yi are independent identically distributed with 

distribution Fi, then it can be written as Sn ∼ F ∗n 

We can easily write the renewal function for the sum variables: 𝑉(𝑡) = 𝐸(𝑁(𝑡)) = ∑ 𝐹0
∞
𝑛=0 ∗

𝐹𝑡
∗𝑛, 𝑈(𝑡) = ∑ 𝐹𝑡

∗𝑛∞
𝑛=0 , so in general case, V (t) = F0 ∗ U(t). Then, we can introduce 

elementary renewal theorem: 

Theorem 5 (Elementary Renewal Theorem) Set µ = E(Y1), yi is i.i.d, i ≥ 1 and assume P(y0 < 

∞) = 1. Assume X0 = 0, Then 
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𝐿𝑖𝑚
𝑡→∞

𝑉(𝑡)

𝑡
= 𝑙𝑖𝑚

𝑡→∞

𝑈(𝑡)

𝑡
=

1

𝜇
 (3) 

Proof: first we compute 

𝑃(𝑁(𝑡) → ∞) = lim
𝑛→∞

𝑃 (𝑁(𝑡) > n for some t) = lim
𝑛→∞

𝑃 (𝑆𝑛 < ∞) 

= lim
𝑛→∞

𝑃 (𝑦0 < ∞, 𝑦1 < ∞, … , 𝑦𝑛 < ∞) 

= lim
𝑛→∞

(𝑃(𝑦1 < ∞))
𝑛

 

The Figure 1 display the whole process: 

 

Figure 1: Sample plot for SN(t) and N(t) 

𝑆𝑁(𝑡)

𝑁(𝑡)
 denotes the average interval length, thus if 𝑃(𝑦1 < ∞) < 1, then 𝑃(𝑁(𝑡) → ∞) = 0 and 

𝑁(𝑡)

𝑡
→

1

μ
(

1

∞
)  But if P(y1 < ∞) = 1, then 𝑃(𝑁(𝑡) → ∞) = 1 and by the Strong Law of large 

numbers, we have 

𝑆𝑁(𝑡)

𝑁(𝑡)
→ μ    

𝑆𝑁(𝑡)−1

𝑁(𝑡) − 1
→ 𝜇 (4) 

However, SN(t)−1 ≤ t < SN(t) for all t. So, it is easy to see 

𝑆𝑁(𝑡)−1

𝑁(𝑡) − 1

𝑁(𝑡) − 1

𝑁(𝑡)
≤

𝑡

𝑁(𝑡)
≤

𝑆𝑁(𝑡)

𝑁(𝑡)
 (5) 

Take the limit for t to infinity, then both sides of the inequality approaches to µ, which implies 

(by Squeeze Theorem) 
𝑁(𝑡)

𝑡
→

1

μ
. Plus the definition of renewal function, we have 
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lim
𝑡→∞

𝑉(𝑡)

𝑡
≥ 𝐸 ( lim

𝑡→∞

𝑁(𝑡)

𝑡
) =

1

μ
 (6) 

We also have V (t) ≤ U(t), V (t) is a special case of U(t) when y0 = 0, renewal epoch Sn  are 

smaller for the pure case, because non-pure renewal process has a period of time before 

renewal, thus pure renewal process is renewed more often than the non-pure one for the same 

amount of time, thus 

lim
𝑡→∞

𝑈(𝑡)

𝑡
≥ lim

𝑡→∞

𝑉(𝑡)

𝑡
≥

1

μ
 (7) 

Since renewal epochs Sn are smaller for the pure case and hence more likely to be less or equal 

to t. So we need to show lim
𝑡→∞

𝑈(𝑡)

𝑡
≤

1

μ
 . It suffices to assume y0 = 0. Fix a > 0 and define 𝑦𝑖

∗ =

𝑚𝑖𝑛(𝑦𝑖, 𝑎), 𝑖 ≤ 𝑛, 𝑆𝑛
∗ = 𝑦1

∗ + 𝑦2
∗ + ⋯ + 𝑦𝑛

∗.  𝑦𝑖 is a sample obtain from Yi. Define Nt
∗ to be 

corresponding pure renewal process with renewal function U∗(t) = E(N∗(t)). Since S∗(n) ≤ S(n) 

for all n, U∗(t) ≥ U(t) for all t. Before we get the result, we need another substitution equation 

to represent the SN(t) by y and N(t). 

𝐸(𝑆𝑁(𝑡)) = 𝐸(𝑌0) + 𝐸 (∑ 𝑌𝑛1𝑁(𝑡)≥𝑛

∞

𝑛=1

)  

= 𝐸(𝑌0) + ∑ 𝐸(𝑌𝑛)𝑃(𝑁(𝑡) ≥ 𝑛)

∞

𝑛=1

  

= 𝐸(𝑌0) + 𝐸(𝑌1)𝐸(𝑁(𝑡)) (8) 

Since we have assumed y0 = 0, we have E(SN(t)) = E(y1) E(N(t)). Furthermore, SN∗(t) ≤ t + a 

because SN∗(t)−1 ≤ t + a, SN∗(t) − SN∗(t)−1 ≤ a. Computing 

𝑈(𝑡)

𝑡
≤

𝑈∗(𝑡)

𝑡
=

𝐸(𝑆𝑁∗(𝑡))

𝑡𝐸(𝑦1
∗)

≤
1

𝐸(𝑦1
∗)

(1 +
𝑎

𝑡
) →

1

𝐸(𝑦1
∗)

 (9) 

Therefore, we have 

lim
𝑡→∞

𝑠𝑢𝑝
𝑈(𝑡)

𝑡
≤

1

𝐸(𝑚𝑖𝑛(𝑦1, 𝑎))
→

1

𝜇
 𝑎𝑠 𝑎 → ∞ (10) 

Here, a can be interpreted as a portion of t. Finally, we can define the renewal equation. 
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Theorem 6 (Renewal Equation) Let z(t) be a real valued function, vanishing on (−∞,0) and 

G(y) is a distribution function, vanishing on (−∞,0). The renewal equation for (z, G) is, for 

some function Z(t) 

𝑍(𝑡) = 𝑧(𝑡) + ∫ 𝑍(𝑡 − 𝑦)𝐺(𝑑𝑦)
𝑡

0

 (11) 

or in short, Z = z + G ∗ Z. Either or both of z and G could be discontinuous at 0. 

Functions related to a renewal process may satisfy such an equation; the objective is to solve 

for Z or at least to approximate it. For example, for any renewal function V (t), we have 

𝑉(𝑡) = ∑ 𝐹0

∞

𝑛=0

∗ 𝐹∗𝑛(𝑡) = 𝐹0 + ∑ 𝐹0

∞

𝑛=1

∗ 𝐹∗𝑛(𝑡)  

= 𝐹0 + 𝐹 ∗ ∑ 𝐹0

∞

𝑛=1

∗ 𝐹∗(𝑛−1)(𝑡) = 𝐹0(𝑡) + 𝐹 ∗ 𝑉(𝑡) (12) 

here, z(t) = F ∗0(t) and G(t) = F(t). Also, it is easy to get 

𝑈(𝑡)  =  𝐹 ∗ 0 +  𝐹 ∗  𝑈 𝑤ℎ𝑒𝑟𝑒 𝐹 ∗ 0 =  1  (13) 

What we need is not just to have an equation, we need to solve the distribution. 

Theorem 7 Assume 𝐺(∞)  <  ∞, 𝐺(0)  <  1 and z is locally bounded. There exists a unique 

solution Z to the renewal equation 𝑍 =  𝑧 +  𝐺 ∗  𝑍 such that Z is locally bounded and 

vanishes on (−∞, 0). The solution is Z = u ∗ z, where 𝑢 = ∑ 𝐺∗𝑛∞
𝑛=0 . 

Assuming U ∗ z is bounded, we check the renewal equation, put Z = U ∗ z to the renewal 

function 

 Z = z + G ∗ Z = z + G ∗ (U ∗ z) = z + (G ∗ U) ∗ z = (1 + G ∗ U) ∗ z = U ∗ z (14) 

Specifically, for renewal function with exponential waiting time, for example, if G = exp(α), 

then 0. So the solution for the corresponding renewal equation is 

𝑢 ∗ 𝑧 = ∫ 𝑧(𝑡 − 𝑥)𝑢(𝑑𝑥)
𝑡

0

= 𝑧(𝑡)𝑈(0) + 𝛼 ∫ 𝑧(𝑡 − 𝑥)𝑑𝑥
𝑡

0

= 𝑧(𝑡) + 𝛼 ∫ 𝑧(𝑥)𝑑𝑥
𝑡

0

 
(15) 
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Theorem 8 (Key renewal theorem) Suppose y0 < ∞, µ = E(y1) and z(t) directly Riemann 

integralable (dRi). Let 𝑢 = ∑ 𝐹∗𝑛∞
0 , then  

𝑙𝑖𝑚
𝑡→∞

𝑢 ∗ 𝑧(𝑡) =
1

𝜇
∫ 𝑧(𝑥)𝑑𝑥

∞

0

 
(16) 

3.3 PARKING MODEL PRELIMINARIES 

We can model each truck driver’s behavior as an alternating renewal process. We assume that 

all functions and sets that are mentioned are measurable with respect to the appropriate σ 

−algebra space. Let 𝐻𝑖  and 𝑅𝑖  each be identical independent distributed (i.i.d) positive 

sequences, with respective non-lattice distribution 𝐹 and 𝐺, and independent with each other. 

Here 𝐹 denotes the distribution of driving time and 𝐺 represents the distribution of rest time 

of each truck driver, respectively. For general modeling purposes, the distribution is not 

specified here. 

Let 𝑌𝑘 = 𝐻𝑘 + 𝑅𝑘, 𝑆𝑛 = ∑ 𝑌𝑘
𝑛
𝑘=1 = ∑ (𝐻𝑘 + 𝑅𝑘)𝑛

𝑘=1  with corresponding renewal process N(t), 

which refers to the number of cycles. 𝑌𝑘 is defined as the length of one cycle (driving plus 

rest). Assume S0 = y0 = 0 and the renewal is counted at 0. In other word, we treat this process 

as a pure renewal process, and we do not distinguish short or long rest anymore. An 

alternating process for the trucking problem can be defined as 

𝑋(𝑡) = 1𝑆𝑁(𝑡)−1≤𝑡≤𝑆𝑁(𝑡)−1+𝐿𝑁(𝑡)
 (17) 

𝑋(𝑡) is alternatingly “driving” (equal to 1) for times with length 𝐻𝑘 and “rest” (equal to 0) 

during rest periods of length 𝑅𝑘, starting with an “driving” period. In other words, X(t) = 1 

indicates the truck driver is driving and 𝑋(𝑡) = 0 indicates the truck driver is rest. We define 

the remaining legal driving time as 𝐿(𝑡). Here Y1 is a drive-rest cycle and equals to  𝑆1 =
𝐻1 + 𝑅1 . When we observe trucks on a highway segment, truck driver is driving. 𝐻1 is a 

random variable, we do not know the value until we observe the truck driver stops for the first 

time.  
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Figure 2: Sample plot for 𝑯𝒕, 𝑹𝒕, 𝑺𝑵(𝒕)−𝟏, and 𝑿𝒕 

Figure 2 shows the details. We can interpret the equation (17) as the following: if a truck 

driver is in his or her first cycle, in other words, if the truck driver is still in the first stage of 

the trip, his or her remaining legal driving time is simply 𝐻1 − 𝑡, where t is the time he or she 

has been driving in the truck. If the truck driver is not in the first cycle, in other words, the 

time that starting driving is greater than the first cycle 𝑦1, the remaining driving time has a 

recursive form. We can make this assumption because the expect length of a cycle is the same 

across the trip. Then, we will develop the cumulative distribution function of 𝐿(𝑡).  

When the truck driver is driving (X(t) = 1) and the probability that remaining driving time is 

greater than a value x is𝑃(𝐿(𝑡)  >  𝑥, 𝑋(𝑡)  =  1). Let 𝑈 = ∑ (𝐹 ∗ 𝐺)∗𝑛∞
𝑛=0 , for any x ≥ 0, 

𝑃(𝐿(𝑡) > 𝑥, 𝑋(𝑡) = 1)  

= 𝑃(𝐻1 − 𝑡 > 𝑥, 𝑦1 > 𝑡) + 𝑃(𝐿(𝑡 − 𝐻1 − 𝑅1) > 𝑥, 𝑦1 ≤ 𝑡)  

= 𝑃(𝐻1 > 𝑡 + 𝑥) + ∫ 𝑃(𝐿(𝑡 − 𝑦) > 𝑥, 𝑋(𝑡 − 𝑦) = 1)(𝐹 ∗ 𝐺)(𝑑𝑦)
𝑡

0

 
(18) 

It is easy to observe the probability formula is consist with the renewal equation form. Solve 

the renewal equation, 

𝑃(𝐿(𝑡) > 𝑥, 𝑋(𝑡) = 1) = 𝑈 ∗ 𝑧 = ∫ 𝑧(𝑡 − 𝑢)𝑈(𝑑𝑢)
𝑡

0

  

= ∫ 𝑃(𝐻1 > 𝑡 − 𝑢 + 𝑥)𝑈(𝑑𝑢)
𝑡

0

 
(19) 

The probability of observing a trucker is driving is easy to get, just plug x = 0 into the above 

equation: 

𝑃(𝑋(𝑡) = 1) = 𝑃(𝐿(𝑡) > 0, 𝑋(𝑡) = 1) = ∫ 𝑃(𝐻1 > 𝑡 − 𝑢)𝑈(𝑑𝑢)
𝑡

0

 (20) 

Take different value for each remaining driving time x, we can simulation the distribution of 

remaining driving time. When t → ∞, we can observe the long-term probability, which is the 

stationary state after long time of operation. Using the theorem 9 (key renewal theorem) to get 

the limit probability of the joint probability and the condition probability, respectively: 

𝑃(𝐿(𝑡) > 𝑥, 𝑋(𝑡) = 1) →
1

𝐸(𝐻1) + 𝐸(𝑅1)
∫ (1 − 𝐹(𝑢))𝑑𝑢

∞

𝑥

 (21) 
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Thus there should be a parking facility at the place where the drivers have the lowest 

probability density of remaining time. In other word, we are able to get the probability 

𝑃(𝐿(𝑡)  <  𝑥, 𝑋(𝑡)  =  1) and derive the cumulative distribution function (CDF) for a truck 

driver on a highway segment. Then, it is easy to calculate the (limited) expected remaining 

legal driving time: 

𝐸(𝐿(𝑡), 𝑋(𝑡) = 1) = ∫ 𝑃(𝐿(𝑡) > 𝑥, 𝑋(𝑡) = 1)𝑑𝑥
∞

0

=
𝐸(𝐻1

2)

𝐸(𝐻1) + 𝐸(𝑅1)
 (22) 

The solution meets our initial idea. After a significant long time, the remaining driving time 

will enter a statistically stable state. Data can validate the results in the future. To summarize, 

the idea is to get the overall driving time distribution, then calculate the violation probability 

and expected remaining driving time. If we are able to acquire the distribution of driving 

hours and rest hours information of all truck drivers in a certain area, we can estimate the 

maximum spacing between parking facilities by using the equation. Equation (22) ensure the 

maximum driving time between each parking facility. For example, 𝐸(𝐻)  =  6 with 

𝑉𝑎𝑟(𝐻)  =  1, 𝐸(𝑅)  =  12,  then 𝐸(𝐿(𝑡), 𝑋(𝑡) = 1)  =  3.1 ℎ𝑟, which indicates the 

maximum interval of travel time in the parking lot is 3.1 hr. However, such data may be 

difficult to acquire accurately. We will introduce a simplified model based on the key renewal 

theorem in the next section. 
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4.0 PARKING DENSITY MODEL 

4.1 BASIC MODEL 

Instead of focusing on the lump sum capacity of discrete rest areas along the highway, the 

perspective to start here with is on the needed density of parking space along a highway for an 

(randomly chosen) individual trucker. The driving time is comprised of cycles of 𝐻𝑖 and 𝑅𝑖, 

where 𝐻𝑖 represents the driving hours and 𝑅𝑖 the rest time in the 𝑖𝑡ℎ cycle, both being random. 

Each cycle has a length of 𝐻𝑖  + 𝑅𝑖, 𝐻 and 𝑅 alternate with each other. Here 𝐻𝑖 is i.i.d. for all 

𝑖. We use 𝐻 for the random variable of a common probability distribution over all the cycles 

𝑖. In the same way, we use 𝑅 for the random variable of a common probability distribution 

over all the cycles. Therefore, one may treat 𝐻 and 𝑅 each recurrent in a renewal process. The 

driving distance between two consecutive rests, assuming a constant driving speed 𝑣, is 

therefore i.i.d. distributed, and is equal to v𝐻𝑖. Additionally, let ℎ = 𝐸(𝐻𝑖) = 𝐸(𝐻) denote the 

mean driving hours each cycle, and 𝑟 = 𝐸(𝑅𝑖) = 𝐸(𝑅) the mean rest hours, for any driver 𝑖. 

Proposition 1 

If the traffic volume is denoted by 𝑉, the total parking hours needed have a density 

requirement along the highway, in an ideal situation, expressed as  
𝑉𝑟

24𝑣ℎ
. 

The result is straight forward from the renewal theory. 
1

vh
 is the density of parking capacity in 

terms of stops per unit of highway distance for a single driver, while 
r

vh
 represents the density 

of stall hours for a driver. Multiplied by the volume and divided by 24 hours per day, 
V

24
, it 

represents the stall density of rest areas in terms of number of stalls per unit length of distance 

averaged over the roadway for all drivers. Note that each stall may serve trucks for 24 hours 

in a day. This proof assumes a uniform distribution of rest hours during a day and ignores the 

heterogeneity between different hours of the day at rest areas, which needs to be addressed 

separately later. 

There are a few abnormalities to consider in order to propose a meaningful formula. 

⚫ Traffic peaking effect, which is similar to the peak hour factor for the urban commuter 

traffic. The parking at particular spots may need to be larger than the expected value by a 

factor of β. 

⚫ Level of service factor. The expected rest hours used for the calculation only on the average 

approximately satisfies 50% of the demand leaving the rest 50% unsatisfied, which is not 

acceptable. The capacity provided shall satisfy a demand at such a confidence as 95%. 
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Therefore, a confidence factor z𝛼 shall be incorporated, where 𝛼 corresponds to a conference 

of 1 − 2α .  

As a result, the parking density provision along the highway shall be estimated as follows. 

𝑧𝛼𝑉𝑟

24𝛽𝑣ℎ
 (23) 

The peak hour factor 𝛽 may be calculated as the ratio between the daily average density over 

the peak parking hour density needs, it ranges between 0 and 1.0.  Note that this peak hour 

factor is regarding the peaking of parking needs instead of peaking of truck volumes. 

4.2 SPECIAL SITUATIONS 

4.2.1 Lump sum provision of parking capacity 

Trucking parking capacity is not provided in a continuous way along the roadway, but in lump 

sum with a spacing as in the reality. 

 
Figure 3: Lost Time due to Parking Area Spacing 

Due to the lump sum provision of parking, truckers are not able to drive to their very limit of 

hours either mandated or preferred before they come to a rest. As it is shown in Figure 3, they 

need to decide whether their remaining driving hours will allow them to reach the next rest 

area if they miss the current one. They will come to a rest area if they know they cannot reach 

the next area, forfeiting their effective remaining driving hours. The tradeoff is that if the 

public sector decides to construct parking areas with larger spacing along the roadway, they 

will need to provide a larger capacity because truckers, considered all being law abiding 

citizens, would lose more of their effective, legal driving time for having to rest earlier before 

the end of the remaining driving hours. We talk about road end effect and the network effect 

respectively in the following. 

4.2.2 Road end effect 

There are two factors to consider regarding road end effects. One is average hours lost and the 

other is unequal probability distribution of remaining hours at locations such as suburbs of 

major metropolitan areas. Earlier we assume that the remaining hours distribution of truckers 
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remains identical over the locations of roadway. We talk about these two effects in more 

details below.  

4.2.3 Average hours lost 

Suppose a driver's longest preferred and possible driving distance would end between two 

parking areas with a spacing of δ. Because the origin of this driver's this cycle of driving may 

be anywhere with equal probability, which means there is no recorded or proven knowledge 

about which place being more likely than others to have originated the trip. This is especially 

true when the traffic is on a network and the trajectories are intertwined. In this case, this 

driver's longest preferred and possible travel end may be considered uniformly distributed 

between the two consecutive stations. Note that this travel end is a stop for rest or end of the 

shipment. 

Between two rest areas A and B longitudinally positioned along a highway, a trucker stops for 

rest at location A when the trucker's remaining driving hours is not enough to drive to location 

B. If allowed, the trucker may stop at any location between A and B. The would-to-stop 

locations of the trucker is an interesting subject of investigation here. Because the starting 

point of the driver's driving is not known, we assume drivers passing a spot 𝑥1 has a 

remaining hour distribution be identical to the remaining hour distribution of those drivers 

passing the spot 𝑥1 + 𝛿, where 𝛿 >  0, which means that drivers passing any spot along the 

roadway have identical remaining hour's distributions. This means the probability of a driver 

that has to stop at a spot within two rest areas for rest remains constant over the roadway. In 

other words, any spot between A and B has an equal probability of being a would-to-stop 

location. This is valid when no knowledge about upstream rest area distributions, particularly 

true in the (especially dense) network situation. In the case of a single roadway line with 

known upstream rest areas in sequence, a similar result may still hold. Therefore, the result in 

Equation (23) becomes the following 

 
𝑧𝛼𝑉𝑟

24𝛽(𝑣ℎ − 0.5𝑠)
 

(24) 

 

Equation (24) is the density of parking provision longitudinally along the roads in terms of the 

number of stalls per mile of roadway, where s is the average rest area spacing along the 

roadway. Note that in the general case of interwoven network of roadways where traffic 

randomly entering and exiting the roadway system, it makes sense to assuming an averaged 

lost driving distance due to discrete availability of parking areas is 0.5s. However, it remains 

arguable in the case of a single line of roadways. Nevertheless, one may use 0.5s as an 

approximate to maintain the problem tractable. Better means may be further explored along 

this line of research. 
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4.2.4 Unequal probability distributions 

One special situation is due to the fact that highways do not have an infinite length, which 

gives rise to the end effect or boundary effect. This end effect means that traffic leaving a 

certain area such as a metropolitan area like Chicago or Houston do not have the same 

probability distribution of remaining driving hours as in other areas such as middle of two 

metropolitan areas or areas nearing their destinations. A line of highway with unevenly 

distributed traffic may also give rise to a similar situation. 

How to deal with the end effect? The answer is that as long as the probability distribution of 

the driving hours is known, which may be in one form for areas close to the departure from a 

metropolitan area and in another form in areas far away from the business areas, one may 

estimate the average, respective area specific parking provision density needed in order to 

maintain a certain service level in terms of satisfying parking demand. 

4.2.5 Network effect 

Consider that truckers do not drive on a single roadway of infinite length but on a network 

with a certain density, although roadways may still be some significant distance apart from 

each other. Assume that the truckers drive on it with random entry/exit locations and the 

entry/exit locations are equally likely distributed on the network. This somehow supports the 

initial assumption of the study about infinite length of highways because traffic 'loop' around 

on the network. There are a few cases to discuss for this situation as follows. 

⚫ Uniformly distributed spatial traffic  

In this case, each road has the same probabilistic volume and the OD locations are uniformly 

distributed in the geographic area. The above Equation (24) applies.  

 

⚫ Spatially uneven traffic  

In this case, traffic or their OD locations are not evenly distributed spatially.  Network needs 

to be divided into subnetworks of respective uniformity of traffic. Equation (24) applies to 

each subnetwork then with its own parameters accordingly. 

 

With spatially unevenly distributed traffic, is there a simple way to plan for the parking 

provision? This is discussed in the next subsection. Let first consider the first case with 

uniformly distributed traffic on the network, uniform regarding the spatial distribution of OD 

locations and travel time. Consider an area with a dense network of highways on which large 

volume of trucks travel. Assume that we are dealing with an area, a measure of whose traffic 

is vehicle miles traveled (VMT), which is a report measure from local, and state to the federal 

governments. In dealing with a region or area in which there is a roadway network, one may 

readily reach the following equation. 

𝑃𝑎𝑟𝑘𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑟𝑧𝛼𝑀

24𝛽𝑑𝛤
 

(25) 
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Whereas M represents the vehicle miles traveled (VMT) on the network of interest. Γ is the 

total roadway (not lane) miles of the network; h is the average driving hours of vehicles 

between two rests in which the vehicle stops for a rest, here 𝑑 = 𝑣ℎ − 0.5𝛿.  Rest area 

spacing and size are a trade-off in practice. Current spacing of rest areas is about 1-2 hours of 

driving on the interstate highways. Regarding inputs to the Equation (24), traffic volume may 

not be readily available for every highway segment, VMT is sometimes the only available 

performance of truck traffic in a given (even local) area. Therefore, Equation (25) may find its 

convenient application in this situation.  Equation (25) allows to divide a large area into 

smaller zones, for each of which a parking density may be calculated, which may represent a 

practical means to deal with heterogeneous traffic distribution on the network.   

There are two cases regarding using Equation (25) as follows. 

⚫ 
𝛿

𝑣ℎ
≈ 0. In this case, Equation (25) applies with little error.  

⚫ 
𝛿

𝑣ℎ
≫ 0. In this case, the spacing parameter 𝛿 used in Equation (25) shall be consistent to the 

resulting spacing parameter implied in the result from Equation (24).  

 

In a general sense considering an idealized situation where the truck parking areas are of 

identical sizes, one may multiply both size of Equation (25) with δ to get to the following 

result: 

𝑃𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑖𝑧𝑒 =
𝑟𝑧𝛼𝑀𝛿

24𝛽𝑑𝛤
 

(26) 

 

In Equation (26), the left side means the number of parking stalls. Once a parking area 

spacing distance is determined, the parking area capacity may be determined accordingly. 

4.3 LOCATION DECISION TRACING TRAFFIC DENSITY 

Another lesson would be to locate the parking areas near interchanges between major roads, 

where the local area (around the interchanges) density of VMT is higher than only 

considering location distribution along single roads in a separate manner. This implies two 

means of parking location planning. The first is positioning rest areas by tracing the network 

traffic density, while the second is to decide location by only considering individual roadway 

lines longitudinally.  Even if the longitudinal density of truck parking needs remains similar 

for each section of the road, the local area density of parking needs may be different between 

the two location decisions above. A simple proof is obvious if one calculates the enclosed 

VMT and then the parking needs densities.  Each pair of rest areas in the middle of a road 

between interchanges in both directions is considered one location, as indicated by Plan 1 in 

Figure 4. Each pair of locations at the diagonal corners of an interchange is also considered 

one location, as indicated by Plan 2 in Figure 4. Suppose roadway is a n by m grid network 

with road separation at a constant distancing s.  
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⚫ Case 1: all rest areas are located in the middle of the road sections between road 

intersections, and each road section has one and only one parking area.  

⚫ Case 2: parking locations are all at the intersections, and each intersection has one and only 

one location.   

 

Again, each rest location contains two spots at opposite sides of the road or at diagonal 

corners of the intersection. In case 1, the total number of parking areas is 2mn+m+n while 

case 2 has a total parking area equal to mn. Both case 1 and 2 ensure an exact driving distance 

of s between parking areas for any driver along any route on the network. An advantage of 

Case 2 is that the size of each parking area at the interchanges almost doubles that in case 1. If 

one checks on the traffic density around each parking area defined by a square centered at the 

parking area with a side size s, one may find that case 2 locates the parking areas with high 

traffic and is equivalent to pooling servers together. Its performance in terms of serving the 

parking needs shall be higher than case 1 because of an underlying mechanism that two 

separate queuing systems have a poorer performance than the two pooled together to have one 

single queuing system. 

The basic concept of the above discussion is that there is an overall parking needs for an area 

with a certain VMT. Locales of the parking areas within the area shall trace the local VMT. 

locals with higher VMT densities shall be accommodated with a higher parking density than 

other locations where VMT is lower. In this case, the overall service of the parking areas 

would be better. 

 

Figure 4: Network rest area location examples: tracing VMT for better service 
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4.4 PARKING SPILL AS AN INDICATOR OF LEVEL OF SERVICE 

When a trucker gets into a parking area on the roadside to rest by the HOS rule and finds no 

stall available, the trucker is forced either to continue driving in violation of the hours or to 

park nearby illegally. We term this spill.  

The driving and parking times are both assumed random. So is the traffic volume. Therefore, 

the number of trucks needing to park at a location at any time of the day is random, so is the 

number of stalls available to incoming truckers at a given parking area. The spill is considered 

and addressed in setting the parameter α and zα in the earlier equations. The actually observed 

spills may be used to calibrate the 𝛼 values used in the equations. Noteworthy is that 

theoretically it is impossible to completely eliminate spill. The only reasonable way to 

approach it is to control the probability of spill to be under a certain threshold such as 5%. A 

practical challenge remains as to how to measure the probability of spill. One way is to 

observe the number of trucks that have entered the rest area but without a parking stall 

available so that the truck either has parking on the ramp or has left the rest area. In other 

words, it is important to track the total number of entering trucks minus the exiting ones 

during a period as compared to the total number parking stalls available. The difference 

between the entry and exit traffic continuously tracked represents the trucks parked inside the 

rest area. Currently, few parking areas in the U.S. have such capability or have conducted 

such a practice in our knowledge. This has made it almost impossible to verify our models 

proposed here. 
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5.0 EXAMPLES 

5.1 FLORIDA EXAMPLE 

Here we use data from the Florida Department of Transportation to illustrate the use and 

implications of our proposed models.  

Based on the average truck AADT of full roadway segments of Florida (data source: 

https://www.fdot.gov/statistics/gis/default.shtm\#Traffic), V = 1137, β = 1, v = 65 mph, r = 5 

hr, h = 5 hr. The average number of hours of driving per driver is difficult to obtain due to the 

potential privacy implications, so we subjectively estimate the average to be 5 hours, likely 

slightly higher than the true value. The rest time length is estimated to be 5 hours over the day 

and night time based on information in Figure 5 Assuming zα = 1.645 (95 % confidence 

level): 

Parking Density =
𝑧𝛼𝑉𝑟

24𝛽𝑣ℎ
=

1.645 × 1137 × 5

24 × 1 × 65 × 5
= 1.20 (27) 

 

  

Figure 5: Truck parking hours distributions (From 8/18/16 to 8/20/16 and from 9/4/16 to 

9/8/16) 

According to report (Office of Freight Management and Operations, 2015), the existing 

parking space density is 1.043 in Florida, which indicates an approximate 13% shortage. Note 

that the shortage comes out of calculation that ignores the private parking. The actual private 

parking may be sufficient to overcome the calculated shortage calculated by only using public 

rest area data.  Also remember that this density is according to a 95% satisfaction of a parking 

need when it arises, which corresponds to an occupancy of the parking stalls at about 61%, 

not a high value. With errors in the parameters, this result might indicate a sufficient parking 

capacity from the public facilities in the study area of Florida, although the supply of private 

parking needs yet to be examined. 

https://www.fdot.gov/statistics/gis/default.shtm/#Traffic
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5.2 CHALLENGES 

The daytime need hours may be different from the nighttime. For daytime, the average driving 

hours probably is around 5, or may be slightly longer. The rest duration during daytime is 

much shorter. Equation (25) may be deemed suitable for daytime needs. 

What about the nighttime needs? At nighttime, the traffic volume is much lower than in 

daytime. For nighttime, what traffic AADT should be used?  Kansas DOT and KTA (2016) 

found that truck rest area peaking happened during 12AM to 4AM for overnight parking. This 

finding makes sense because this peaking period is one that the truckers rest time overlap the 

most, meaning truckers likely entered the parking areas from 7-9pm all the way to midnight. 

Early truckers left the rest area as early as 4-5AM.  

Night parking is needed for long distance truckers. For truckers who drive within 8-10 hours 

for the business two-way would not likely need to park overnight on the road. Therefore, 

calculation of the overnight parking capacity would only need to consider the volume of long-

distance truckers. In contrast, the daytime parking needs would need to consider all the long-

distance truckers and short distance truckers beyond 4-5 hours of driving business. Drivers 

who finish the delivery business within 4-5 hours generally would not need a rest normally. In 

addition, local truckers, who start out at the beginning of the day and get home at the end, 

even if they drive more than 8 hours on a day, would not need to park overnight because their 

one-way trip would be within 4-5 hours. To conclude, it'd be meaningful to differentiate the 

long-distance truckers from the local/regional drivers in order to decide the overnight parking 

space need. 

If we treat long haul traffic with the same formula as Equation (25), it'd reveal the density 

needs for (largely) overnight parking during the period from 7pm to 7am. In this case, the 

remaining hours of driving for each driver might be much less than assessed at a moment 

during the daytime. Each driving, after the overnight parking, will have a remaining hour of 

driving much larger than before parking. 
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6.0 CONCLUSION 

Due to the hours of operations regulation, truckers in the U.S. as well as in the EU countries 

are required to rest periodically for the sake of safe driving. Rest areas must be available to 

truckers when needed. However, the tremendous challenge arises from here due to the 

randomness in the origin-destination of each trip, demand for shipping, individual preference 

to the rest, and driving hours, as well as different subjective considerations of local traffic in 

the planning of their driving hours. Therefore, it remains a significant challenge as to where to 

locate rest areas and in what capacity.  

Most literature on truck parking issues focuses on the diagnosis of locations with truck 

parking issues as indicated by roadside parking, ramp parking, and other illegal parking 

behaviors. Little analysis is conducted to identify factors affecting trucking parking needs and 

the relationship between these factors and the truck parking demand.  Although it is a great 

challenge to study this analytical relationship, this paper represents the first step in this 

direction. We believe the effort to exploring this relationship is in the right direction. Along 

this direction of effort, we propose analytical formulas in this paper for the relationship 

between identified factors and the parking demand as indicated by demand density along the 

roadway. This relationship considers traffic volume as represented by VMT, rest and driving 

hours distributions, traffic speed, rest areas level of service indicated by the probability that a 

trucker is able to find an available stall in the parking lot when a need for parking arises, etc. 

This study marks the beginning of a line of effort to address parking capacity planning. Much 

more remains to be studied. For example, the probability distributions of rest and driving 

hours need to be calibrated using field data. Due to the time and resource limit, we do not 

conduct a full-fledged study of the time distributions in this study, and we leave it as a future 

effort. As a result, it is hard to test our model except for applying it to explaining in a general 

sense the adequacy of parking capacity in an area. In this study, we used the Florida state 

department of transportation data and revealed a general shortage of parking space along the 

Florida highway; However, our initial analysis using the Florida data does not consider 

supplementary parking spaces offered at private parking areas, among the others. One side 

result, also very interesting, is that a 95% level of service to truckers, meaning they are able to 

find a spot available at 95% chance when it comes to a parking area for rest, implies a 60% 

occupancy of parking stalls on average, which sounds like a waste of public resources. In 

other words, in public planning of truck parking areas, high occupancy shall not be in 

consideration because it implies a high probability of parking spills.  
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