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EXECUTIVE SUMMARY 

Growing e-commerce volumes and consumer expectations of free and faster shipping are 

pushing the adoption of new delivery vehicles. New driverless air and ground vehicles are being 

launched and tested to deliver products or services by traditional package delivery companies or 

to support innovative ideas in retail, groceries, and healthcare.  

 

For the delivery of time-sensitive supplies, drones may provide the means to bypass many 

obstacles experienced by ground transportation vehicles. However, drones are subject to their 

own set of constraints, like weather conditions and limited range, that limit the likelihood of 

successful deliveries. Drones are increasingly being utilized to deliver medical supplies, and the 

COVID-19 pandemic has accelerated this trend. Drones arrive quickly by taking more direct 

paths and avoiding ground-based obstructions. However, drones are not completely reliable and 

may also experience failures and delays. For consumer products, delivery delays are an 

inconvenience, but for some time-sensitive deliveries like medical supplies delays are likely to 

cause severe health impacts or even fatalities. 

 

The number of drones needed when there is demand uncertainty is highly dependent on charge 

times, use of battery swapping, and population in the service area. Additional consideration 

should also be given to potential mechanical failures and maintenance schedules. It is important 

to note that failures due to extreme weather conditions cannot be addressed by simply having 

more available drones. Extreme weather conditions, which will result in a failed delivery for one 

drone, will result in a failed delivery for any other drone because drones cannot operate under 

extreme weather conditions.  Wind is a key constraint for drone deliveries. Successful drone 

deliveries are highly influenced by wind speeds, wind direction, and precipitation rates; however, 

the ambient temperature may mostly be ignored for short delivery distances.   

 

Furthermore, there is an access and equity question associated with a drone’s ability to deliver to 

some areas. For example, airports are often restricted flight zones that allow for no drone 

operations. Such areas are also areas with higher proportions of lower-income communities. 

Future research could examine where a delivery system could be employed and what ground 

delivery systems are required locally to adjust for access differences.  

 

Another important aspect is the sustainability of drone deliveries. In terms of energy and emissions 

efficiency there is no vehicle type that dominates across the board. Drones are more efficient in 

time constrained and low-density delivery scenarios. Road autonomous delivery robots (RADRs) 

are more efficient than E-vans when delivering to relatively low number of customers.  New air 

and ground autonomous vehicle types may reduce carbon emissions significantly but they may not 

necessarily reduce on-road travel. For some autonomous vehicles the reduction of on-road travel 

is also accompanied by additional travel on sidewalks (SADRs) or air travel (drones).   

 

In summary, drones or Unmanned Aerial Vehicles (UAVs) can significantly improve the reliability 

of time-sensitive deliveries in urban and rural areas as well as reducing carbon emissions. Policy 
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makers and regulators should seriously consider their benefits as well as potential safety risks 

related to malfunction or mid-air collisions.    
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1.0 INTRODUCTION 

In recent years there has been a lot of exciting new developments and innovative applications of 

drone or Unmanned Aerial Vehicles (UAVs) in freight transportation and logistics. UAVs have 

the potential to reduce costs and delivery times and UAVs have been featured frequently in the 

media following announcements made by large corporations such as Amazon (Vincent and 

Gartenberg, 2019). 

However, the sensitivity of UAVs to weather events and  their potential impact on energy 

consumption and greenhouse gas (GHG) emissions are currently understudied.  This research 

studies how weather affects drone operations and fleet size as well as the potential of drones to 

reduce carbon emissions in last mile deliveries. The focus of the modeling effort is on electric 

multicopters that weigh less than 20 kg given their potential for urban and rural deliveries as 

well as their relatively modest cost.  

 

1.1 BACKGROUND 

This section provides a brief background regarding drone-truck applications, fleet sizing, the 

impact of weather conditions, drone regulation, and drone carbon emissions.     

 

1.1.1 Drone-Truck Routing and Optimization 

The idea of utilizing both UAV and trucks (Murray and Chu, 2015) to improve overall delivery 

efficiency has also been analyzed by many authors focusing on the actual design of routes and 

logistics systems in the last five years. There has been an explosion in the number of papers 

related to drone optimization. Several reviews present an overview of modeling efforts. A 

survey of applications of drones in civil problems is presented by Otto et al. (2018). A more 

recent survey by Macrina et al. (2020) focuses mostly on routing problems with drones and the 

review by of Chung et al. (2020) on drone-truck combined operations.  

 

1.1.2 Fleet sizing  

Fleet sizing has also received scant attention in relation to drone routing. The work of Lee (2017) 

utilizes modularity and simulation in drone design to estimate fleet size optimize their operation. 

Rabta et al. (2018)  studies  last mile deliveries in humanitarian logistics using a MIP model 

where the objective minimizes the total travelling distance or cost taking into account drone  

payload and energy constraints and the installation of recharging stations. Chauhan et al. (2019) 

present a MIP formulation and heuristics to maximize drone fleet coverage also taking into 

account drone  payload and energy constraints and providing facility location, allocating drones 

https://www.sciencedirect.com/science/article/pii/S0968090X20306744?casa_token=WMbTFfynWCcAAAAA:-i3GWDNFAiLpTYWh4N_x4-dHSChdg2dXzxZma1qOgsrFsvg0QRoQc7HrKQzELS4WItWuYVNlPgY#b0115
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to facilities and drones to customers. This work is later extended to provide robust solutions 

when accounting for uncertainty in initial energy battery availability and energy consumption 

(Chauhan et al., 2020).  

Torabbeigi et al. (2020) formulates a set covering problem and a MIP model, considering 

payload and battery consumption, to locate facilities and minimize the number of drones in a 

parcel delivery system.  

Fleet sizing under demand uncertainty has been studied for specific time-sensitive applications. 

For example, Boutilier et al.  (2017) takes into account spatial demand uncertainty and utilizes 

optimization and queuing to determine drone fleet size for the emergency delivery of automated 

external defibrillators. This work was extended by Glick et al. (2021) to include not only demand 

uncertainty but also the impact of weather conditions on drone fleet sizing.  

 

1.1.3 Impact of Weather Conditions  

Some researchers have analyzed the impact of weather conditions such as temperature on electric 

drone operations. For example, Kim et al. (2018) presents a  robust optimization approach to find 

the optimal number of drones and flight paths taking into account that temperature affects battery 

performance. Similarly, Thibbotuwawa et al. studies drone flight path optimization under 

uncertain weather conditions (2020). Overall, at this time there is little research linking weather 

conditions and drone operations and fleet sizing.  

 

1.1.4 Emissions 

In terms of emissions, UAVs have many potential advantages. An analysis of lifecycle UAV and 

ground commercial vehicles CO2e emissions with different route and customer configurations 

showed that UAVs are more CO2e efficient, for small payloads, than conventional diesel vans in 

a per-distance basis (Figliozzi, 2017). However, UAV deliveries were not more CO2e efficient 

than tricycle or electric van delivery services if a few customers can be grouped in a route. 

Ground vehicles can be more efficient regarding emissions in dense urban areas where many 

customers can be grouped in a route; UAVs may be more efficient in remote rural areas  

(Figliozzi, 2017). However, the literature have not analyzed the relative emissions of drones 

against ground delivery robots.  

 

1.1.5 Regulation 

According to Stöcker et al. (2017) countries around the world have been steadily adopting  

regulations to minimize risk of UAV failures and collisions that can put in risk lives and 

property.  These regulations are similar in many aspects to requirements that sidewalk 

autonomous delivery robots (SADR) and road autonomous delivery robots (RADR) must follow 

(Jennings and Figliozzi, 2019, 2020): registration and licensing, reducing speeds and or 
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operating weight, and minimum levels of insurance and liability protection. In addition, for 

UAVs restrictions apply to airspace use such as maximum flight altitude and restrictions near 

critical infrastructure such as airports. 

In the US, the Federal Aviation Administration (FAA)  issued restrictions on the non-recreational 

use of unmanned aerial vehicles which effectively prohibited freight delivery using drones in the 

USA (FAA, 2016).  Restrictions prevent any business from currently utilizing drones in a freight 

delivery service and require that drones must be flown using VLOS (visual line of sight) at all 

times which would greatly reduce the size of the service area, especially in forested hilly terrains 

or dense areas with skyscrapers, and reduce the economic benefit of  not having a human pilot in 

the UAV.  According to 2016 FAA rules, drones must not be flown over populated areas, less 

than 400’ from any structure, when visibility is a less than three miles, and reduced daytime 

visibility.  These restrictions allow freight to be delivered in rural environments over short 

distances and on very clear days.  The 25 kg (55 lb) weight limit, which includes payload, does 

affect some of the drones currently found in the USA marketplace.     

1.2 GOALS 

UAVs or drones have the potential have many advantages and can disrupt last mile deliveries 

and supply chains.  UAVs are not constrained by road infrastructure and/or congested roadways. 

UAVs can increase significantly last mile freight mobility for packages and small payloads. 

UAVs are likely to have a nationwide impact, in both urban and rural areas. However, UAVs are 

severely constrained by its limited range and by weather conditions. The goals of this research 

are to: (a) model and study the impacts of weather conditions such as wind, temperature, and rain 

on drone operations, (b) analyze fleet sizing given demand uncertainty for critical deliveries, and 

(c) compare drone last mile emissions against traditional and innovative ground vehicles such as 

ground delivery robots.  

This report is organized as follows: after this introduction Section 2 presents a review of e-

commerce and package delivery trends. Section 3 studies fleet sizing for time-sensitive and 

stochastic deliveries. Section 4 discusses weather modeling and Section 5 studies the impacts of 

weather conditions on drone range. Section 6 presents the modeling framework to analyze 

energy and emissions. Sections 7 and 8 presents and discusses energy, distance, and CO2 

emissions results comparing drones to alternative delivery vehicles. Section 9 ends with 

conclusions.  
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2.0 E-COMMERCE TRENDS AND PACKAGES 

According to the United States Quarterly E-Commerce Report, e-commerce sales in the United 

States (US) have increased at double digit rates for the past two decades  (USDC, 2020). During 

this time, e-commerce has outpaced brick-and-mortar retail growth, both in the United States and 

globally. Some online stores promote an in-store pickup service, but the large majority of online 

customers have products delivered to their residence, their work, or another location of their 

choice. Though some authors distinguish between retailers (sales revenue is primarily generated 

offline) and e-tailers (sales revenue is primarily generated online), this section will use the term 

retailer to refer broadly to sellers, and the specifiers “in-store,” “brick-and-mortar,” “online,” and 

“e-commerce” will be used as necessary. 

2.1 E-COMMERCE INTERNATIONAL TRENDS 

Global statistics show a general increase in e-commerce sales, but the rate of adoption varies 

greatly by country. E-commerce remains a minority fraction of total retail volume, but further 

growth is expected before market saturation is achieved. For overall e-commerce volume, 

China’s leads globally with over $1T of e-commerce sales projected for 2020, and for 2017–

2019, its average year-over-year (YoY) increase was +24.5%. During the same time, e-

commerce in the United States grew steadily with an average YoY increase of +11.5%. The 

United Kingdom was clearly an early e-commerce adopter, but by 2018, the e-commerce market 

of Japan was larger. India had the steepest shift to e-commerce with average year-over-year sales 

increases of +35.0% YoY. In the selected countries, no market showed a decrease in online 

shopping. Figure 1 shows recent trajectory of e-commerce, including 2020 forecasted volume, 

which was adjusted in June 2020 due to COVID-19 pandemic (Statista, 2020). Figure 1 includes 

only the following products: fashion, electronics, toys/hobby, furniture, food & personal care. 
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Figure 1: International Comparison E-commerce sales 2017–2020 

 

There are no signs of e-commerce markets contracting in the near future. Sales volumes 

projections (Figure 2) through 2024 for selected countries expect significant e-commerce 

increases, with China forecast to remain the top e-commerce consuming nation (Statista, 2020).  

Figure 2 includes only the following products: fashion, electronics, toys/hobby, furniture, food & 

personal care. India is expected to grow fastest during the same time period, but the total dollar 

volume is projected to be relatively low compared to China and the USA. Even for countries–

such as the United States–where 2024 projections of e-commerce remain a minority portion of 

total retail volume, the anticipated increase of home deliveries represents a massive uptick in 

freight trip activity.  
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Figure 2: E-commerce forecasted sales 2020–2024. 

 

2.2 US PACKAGE DELIVERY TRENDS, 2015–2019 

Between 2015–2019, US major couriers FedEx, UPS, and United States Postal Service (USPS) 

all exhibited growth in the number of packages shipped (FedEx Corporation, 2018; 2019) (UPS 

of America Inc., 2018; 2020) (USPS Corporate Communications, 2020). By the end of fiscal 

year 2019, 1.52 billion packages were shipped domestically, a +27.5% increase from 2015. By 

company, FedEx package volumes grew +23.5% and UPS’s grew +19.3% over the same period. 

USPS package volume–which includes Priority Mail, Priority Mail Express, First-Class Package, 

Parcel Return Service, and Parcel Select–increased by +37.8%, from 4.5B to 6.2B pieces. 

Conversely, USPS’s volume of first-class (flat) mail declined from 62.6B to 54.9B pieces. This 

signals the shift in mail streams from postage stamps to shipping labels, as can be attributed to e-

commerce demand.  

 

FedEx Ground grew dramatically (+29.5%) but their air cargo service, FedEx Express, saw 

relatively modest growth (+8.1%). Unlike FedEx Express, UPS’s Next Day Air dramatically 

increased by +43.0%. UPS Deferred (a service slower than Next Day Air but faster than Ground) 

and UPS Ground services saw moderate increases but were relatively less than the growth of 

FedEx Ground. The increase in package circulation correlates with the increase in e-commerce 

sales, but it should be noted that the figures in 
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Table 1 represent total packages shipped, whether associated with e-commerce or not. 
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Table 1: Number of packages annually*, US domestic (in millions). 

Courier 2015 2016 2017 2018 2019 
Vol. change 

2015-2019 

% Change 

2015-2019 

FedEx Express  979 990 995 996 1,059  80 8.1% 

FedEx Ground  2,523 2,747 2,882 3,043 3,267  745 29.5% 

UPS Next Day Air 334 352 371 390 478  144 43.0% 

UPS Deferred 334 345 356 362 410  77 23.0% 

UPS Ground 3,294 3,446 3,571 3,668 3,840  545 16.56% 

USPS 4,500 5,200 5,700 6,200 6,200 1,700 37.80% 

TOTAL 11,964 13,080 13,875 14,659 15,254 3,290 27.5% 

*Fiscal year ends Dec 31st for UPS and USPS; fiscal year ends Mar 31st for FedEx. 

(FedEx, 2018; 2019) (UPS, 2018; 2020) (USPS, 2020) 

 

With all three major US couriers showing strong growth in recent years, the overall momentum 

of package circulation is apparent. It is no longer unusual to see parcels on residential doorsteps, 

with many consumers receiving shipments almost daily. The logistics of transporting the 

package to final delivery must be reliable and efficient. As more producers and retailers deliver 

directly to the end user, it is critical to understand timeframes, operations, and product 

destinations, as they will shape future delivery modes and receiving technologies. FedEx expects 

US parcel delivery to increase to 100 million packages per day by 2026 (Sutherland, 2019), so 

transitioning towards the impending scale of associated freight trips will have implications for 

both retail stakeholders and transportation practitioners. 

2.3 US E-COMMERCE CONSUMER DEMOGRAPHICS 

Who is purchasing e-commerce goods? In the United States, urban dwellers are more likely to 

purchase online for home delivery than their rural counterparts (FHWA, 2018). According to the 

2017 National Household Travel Survey, about 56% of urbanites purchased online at least 

monthly, compared to 51% of rural residents. (This may be attributed to the relatively limited 

availability of broadband networks in rural areas.) Online platforms have successfully reached 

holiday consumers; in 2017, people living in urban, suburban, and rural settings all widely used 

e-commerce for seasonal purchases (Statista Survey, 2017b). No categories of US shoppers 

utilized online shopping for 100% of holiday shopping, but urban dwellers were more likely to 

shop online than rural residents, with suburban households purchasing online most frequently. 

Though not everyone embraces e-commerce, in 2017, about 60% of internet users purchased 

online at least monthly, with 29% of this same group purchasing at least once per week (Walker 

Sands, 2017).  

 

Recent surveys find that 43% of American consumers cite convenience as their strongest 

motivator for shopping online, and pricing is a distant second at 19% (eMarketer, 2018b). Across 

all age categories, e-commerce has been widely adopted, and Amazon was the most popular 

online marketplace (Table 2). However different age groups vary in their means of internet 

access and types of product purchased (eMarketer, 2018a). The only age category for which over 



 

11 

 

half of respondents did not use Amazon was the 60+group. Young adults were most likely to 

make purchases via smartphone; about 60% of shoppers aged 18-29 report smartphone shopping.  

 

Table 2: US online shopping activity by internet users, by age. 

 Percentage of Age Group 

Shopping Activity 18-29 30-39 40-49 50-59 60+ Total 

Purchased a product on Amazon.com or Amazon app 

using Amazon Prime 59.6 65.0 57.4 51.1 48.1 54.4 

Researched a product digitally before purchasing in-

store 55.8 54.0 51.1 42.4 39.2 46.1 

Purchased via an online marketplace (e.g., Amazon 

independent sellers, Etsy, Wish) 50.0 46.5 41.6 45.9 41.0 44.0 

Purchased via a smartphone 60.6 58.0 40.5 27.9 19.0 35.5 

Purchased a product through a retailer's rewards 

program (e.g. Amazon Prime, Sephora, Ulta) 47.1 39.0 35.3 24.5 25.2 31.3 

Purchased digitally and picked up in-store 26.9 36.5 30.0 27.9 23.6 28.2 

Looked at a product in-store before purchasing it 

digitally 36.5 31.0 28.4 23.1 17.4 24.7 

Purchased a travel product/service (e.g. airline tickets, 

hotel, rental car) 26.9 25.5 20.0 20.1 18.4 21.1 

Heard about a product via social media, then 

purchased it 31.7 28.0 21.6 19.7 11.4 19.8 

Used a shared economy service (e.g. Airbnb, Lyft, 

Uber) 37.5 21.5 12.1 7 6.2 13.1 

Purchased from a website based outside of the US 12.5 15.0 10.0 13.5 9.4 11.6 

Received a subscription box (e.g. Blue Apron, 

Birchbox, ipsy, Stitch Fix) 12.5 15.0 11.6 7.9 3.6 8.8 

Bought using voice-enabled speaker (e.g. via Alexa, 

Amazon Echo, Google Home) 1.0 4.5 4.2 3.5 2.9 3.3 

None of these 3.8 4.0 4.7 5.7 10.9 6.9 

(eMarketer, 2018a)  

 

The relationship between age categories and online purchasing may be studied further, as 

different age categories often elect different housing types. This can affect the efficiency of 

urban deliveries as well as the types of goods ordered. For example, younger Americans are 

more likely to live in apartments or in group living arrangements, and some older Americans live 

in senior communities, which are often on the less densely developed edges of urbanized areas 

where land is less expensive.   

2.4 SHIPPING COSTS AND CONSUMER PURCHASING DECISIONS 

2.4.1 Consumer willingness-to-pay, or lack thereof 

Shipping costs hold weighty influence in e-commerce consumers’ purchasing decisions. 

According to a UPS study, shipping fees are a significant contributor to failed sales, with an 

estimated 41% percent of carts abandoned after shipping costs are presented (UPS, 2019). E-

commerce businesses know they must meet consumer expectations, which puts significant 

pressure on the pricing process. Convenience is prioritized, but its value does not readily 
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translate into an acceptance of the premiums required to the quickly transport goods to front 

doors. 

 

A study about delivery of online purchases in London indicates that there is a “mismatch 

between what people are willing to pay for the delivery and the [true] cost of providing the 

delivery service” (Allen et al, 2018). A 2016 report by UK consultants OC&C estimated the last 

mile shipping costs the e-commerce retailer to be 5–23 times more expensive than the same sale 

in a store (cited in Allen et al, 2018). This is corroborated by other studies finding online 

channels to be less profitable than in-store channels whenever return rates are high or consumers 

are not willing to pay for delivery (Kumar and Ruan, 2006) (Zhang et al, 2017). 

 

Even as “free” shipping has been promoted enough to be fairly normalized, the actual logistics of 

package shipments cost money–and shipping companies are not in business to lose money. 

Aircraft and delivery trucks represent major capital expenditures, and employee salaries and 

vehicle fuel are ongoing expenses. Further imbedded costs include real estate expenses for 

freight depots, delivery vehicle staging areas, warehousing in the urban periphery, as well as the 

extra transportation costs between warehouse districts and urban delivery destinations. For most 

consumers, these complex operations happen behind the scenes, and the out-of-sight nature of 

logistics undermines customers’ ability to accurately recognize the value in home delivery. Table 

3 further details consumer reactions to shipping costs.  

 

Table 3: Influence of Shipping Costs in Online Shopping for US Shoppers in 2017. 

I cancel my order if the shipping costs are too high 57% 

High shipping costs make me think twice about whether I actually want a given product 54% 

I tend to order more often from shops that offer free shipping 45% 

I always make sure that I can return everything free of charge 15% 

High shipping costs make me order rather more, so I feel like it is worth paying them 5% 

Shipping costs have no influence on my purchase decision 2% 

(Statista Survey, 2017a).  

 

 

2.4.2 Retailer approaches to pricing shipping 

Retailers are caught between demands for expedient shipments and consumer aversion to 

increased shipping costs. Depending on their commodity dimensions and target consumer, e-

commerce retailers must choose a pricing strategy to cover shipping expenses. Some offer lower 

prices with higher shipping costs (partitioned prices) while other retailers offer higher prices on 

goods sold but free shipping while still others offer free shipping beyond a certain amount of 

spending (Frischmann, 2014). These strategies appeal to different types of online customers. 

Indications are that retailers offering “free” shipping actually charge more than online retailers 

with partitioned prices, as the price of “free shipping” is factored into the retail price of the goods 

sold online. Some on-demand delivery services such as Amazon Prime and Walmart Grocery 

offer free delivery as a privilege of their annual membership fee; this appeals to customers who 

can sink the cost to secure a prepaid cap on their shipping expenses (Keeling and Figliozzi, 

2019). 
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2.4.3 Free shipping promotions 

Free shipping is a conundrum for e-commerce. To promote free shipping, retailers must titrate 

the true shipping costs into product retail values. However, to support the perception of free 

shipping, online prices must be competitive with those of brick-and-mortar stores. For shoppers 

only interested in purchasing from e-commerce vendors, price transparency would be beneficial 

to consumers because retailers must compete on shipping costs (Shao, 2017). But the 

competition would be fierce as Shao also referenced a 2008 study indicating that 72% of online 

shoppers would abandon a virtual shopping cart if free shipping were available from another 

online retailer. With consumers having easy online access to vast amounts of pricing 

information, customers can easily shop around for the best price including free or reduced cost 

shipping. As such, Shao’s models find that free shipping is the most broadly effective policy to 

increase sales. 

 

Free shipping can increase consumer acquisition, but customer loyalty may prove fickle if 

consumers view free shipping as requisite for purchase. During the advent of e-commerce in the 

late 1990s and early 2000s, e-commerce offered free shipping to incentivize people to convert to 

online purchasing. As a result, consumers are now conditioned to expect free shipping. Many 

media articles penned by retail industry leaders bemoan this consumer expectation as financially 

unsustainable, as it positions retailers as loss leaders (Ungerleider, 2016). The CEO of Hudson’s 

Bay Company estimates it costs three times more in supply chain costs to serve an online 

customer versus serving the same customer in an actual store. Bob Schwartz, best known for 

founding Nordstrom.com, contends that because Amazon has nearly-unrivaled advantages in 

investor backing, economy of scale, and supplementary revenue streams, it is unbridled from 

immediate profitability and can  pressure other retailers to feed into their own free shipping 

crisis.  

 

In addition to shipping costs, e-commerce direct delivery extends the retailer’s customer service 

obligations to the product’s end reception, including shipping factors beyond their control. When 

shipping is bundled into the retail price, e-commerce consumers are not disincentivized for 

incurring additional costs (Allen et al, 2018). Shoppers may even purchase additional goods to 

meet minimum free shipping thresholds–and later return items they do not need. Unless a 

restocking fee is part of the return policy, the retailer will lose profit through carrying costs, 

labor, and shipping costs. Even for e-commerce retailers that outsource the actual shipping of 

goods, the accumulation of shipping cost ultimately inflates the price of goods.  

 

All articles surveyed about this subject indicate free shipping is an important aspect of e-

commerce and choices consumers make. How this is assessed varies from study to study and 

may change over time. Shipping is a volatile aspect of the retail business and change should be 

expected.  

 

2.4.4 Competitive lead times  

The time that lapses between the placement of an order and the time of delivery, (e.g. the lead 

time) is a value determinant for customers. Overnight shipping is no longer the most premium 
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service now that on-demand (e.g. lead time < 1 day) shipping options are expanding. Some 

online retailers stage products in warehouses near major population centers, so products 

available for on-demand delivery can reach their destination within a few hours. For shippers, the 

per-item shipping rates for Amazon’s US domestic shipping varies between $4 (for delivery 

within 7 days) and $20+ (for 1-day shipping), depending on weight of the item (Amazon.com, 

Inc., 2018).  Not only does a short lead time increase the cost of delivery, but the narrowness of 

the acceptable delivery window does as well (Gevaers et al, 2014). However, a report by United 

Parcel Service states that consumers generally opt for competitive cost over competitive speed 

(UPS, 2019).  

 

For last mile logistics, costs, on-time reliability, and the ability to respond to last-minute changes 

are the top concerns of logistics providers, manufacturers, and retailers. As increasing numbers 

of delivery carriers navigate through road networks alongside many other roadside users, curb 

access will become a greater determinant of on-time delivery. Both retailers and shippers are 

stakeholders in last mile issues; efficiency losses in delivery will increase shipping costs and 

decrease competitiveness. Couriers and shipping companies will be investing in the development 

of delivery innovations that can mitigate or circumvent these challenges. 

 

2.5 THE COST OF FAILED VISITS AND RETURNS  

What happens when an item is returned? All retailer will experience customers that want to 

return an item after purchase. E-commerce poses special problems as products ordered online 

likely come from a central warehouse and a third party makes the actual delivery.  Returns are an 

enormous cost for retailers; the United States National Retail Federation reports that 9.6% of 

online sales were returned in 2019, representing nearly $41B in volume (Appriss, 2020). Most e-

commerce consumers return up to a quarter of all products they purchase online, and some 

consumers return items even more frequently (Statista Survey, 2017c). 

 

The reverse logistics of returned items are tricky. Retailers with physical locations will often 

accept returns of items ordered online and shipped direct; this has earned the acronym BORIS: 

buy online, return in-store. In fact, many retailers seem to prefer BORIS because consumers may 

make impulse purchases while in the store. Unfortunately, BORIS has been exploited for 

illegitimate returns for unwarranted credit, a fraudulent activity that further erodes retailer profits 

(Table 4). However, about two-thirds of returns are handled the same way they arrived on the 

consumer’s doorstep–via a third-party shipping company. This could mean a consumer boxed 

the item back up and mailed it from a post office, or a delivery company picks up the item to 

return it to the originating retailer. 

 

Table 4: Summary of returns and return fraud in the US. 

Retail category USD, billions 

Total retail industry sales $3,810 

E-commerce sales $426.7 

Online returns $41.0 

Online return, BORIS $20.5 

Online return fraud, BORIS $1.6 
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Online returns to non-store locations $17.1 

Online return fraud to non-store locations $0.4 

(Appriss, 2020) 

 

The cost and rate of returns from e-commerce is greater than the return burden of brick and 

mortar stores, especially for some product categories. In the UK, up to 20% of all clothing 

purchased online is returned (Table 5); this return rate is nearly double that of off-line clothing 

stores (Bernon et al, 2016). Many online customers purchase multiple sizes of the same clothing 

style, try the clothing on when it arrives and then ship the unwanted pieces back. This creates 

logistical challenges for retailers: stock becomes unbalanced, online purchases are returned to 

retail stores, and returned products may need to be shipped elsewhere in the same store’s retail 

system. For time-sensitive retail categories, products lose value while in circulation. There have 

been cases where retail stores have negative sales volumes, from accepting a volume of online 

returns exceeding the volume in-store sales (Bernon et al, 2016).  

 

Table 5: Percent of product returns in the United Kingdom by category 

Type of Product Average Highest Lowest 

Retail Store    

Clothing 10.9 19 4.9 

Electrical/Technical 8.7 13.3 5.9 

Home 5.5 11 1.5 

Online    

Clothing 20 38.2 8.1 

Electrical/Technical 8.0 10.3 6.4 

Home 8.5 12.7 5.0 

(Bernon et al, 2016) 

 

Department store retailer Nordstrom is opening return-oriented storefronts, including three 

Nordstrom Local stores in the Los Angeles area since 2017, with more return-locations planned 

to open in the near future (Meyersohn, 2019). These locations will focus on receiving online 

orders for customer pickup, facilitating returns, and on-site tailoring and alteration services, 

something that may reduce the number of returned items.  If customers can return unwanted 

products to a brick and mortar store, the retailer is likely to save money; for example, if 40% of 

returns can be channeled through a store rather than being sent back using a delivery service, 

retail profit margins could increase by seven percent (Capgemini Research Institute, 2019). 

 

Some online retailers have started opening brick and mortar locations, with the hope many 

customers will instead return products in a more traditional fashion instead of just shipping them 

back the same way they arrived, via a package delivery service (Dennis, 2018). Industry experts 

are concerned that for many e-retailers, the rate of returns for online purchases is higher than in-

store purchases, and the expectations of full refunds are often more pronounced for online 

purchases compared with traditional retail.  

 

Some companies preemptively provide bags for returns in case the customer isn’t pleased with 

the delivered product. Such is true for Jack Threads, an online-only clothing company. For their 

return policy, a customer is charged if they don’t return clothing within seven days of delivery 

(Ungerleider, 2016).The CEO of Jack Threads feels offering free shipping (including reverse 
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shipping) is necessary to make the customer happy and free shipping likely converts a first time 

purchaser to a long term customer. The number of times a package handling company visits a 

customer’s home also needs to be considered, especially for returns and a replacement product. If 

a customer returns an item by shipping it back to the retailer, a minimum of three visits must be 

made if the customer orders a replacement for the unwanted item. First, the initial item is 

delivered, then the returned item is picked up and finally, the replacement item is delivered 

(Bernon et al, 2016). While customers sometimes bear the burden of return costs, the majority of 

return shipping costs are borne by the retailer.  
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3.0 MODELING TIME-SENSITIVE DELIVERIES 

The previous sections highlighted the growth of e-commerce and parcel deliveries in the US and 

abroad. Drones are particularly useful in areas with difficult access (Chauhan et al., 2019), e.g. 

remote or mountainous regions, or where traffic congestion increases delivery costs and 

reliability  (Figliozzi, 2011). Reliability and speed delivery are key factors as mentioned in the 

previous sections, customers are sensitive to costs but at the same time companies and customers 

are pushing for increasingly more expensive shorter delivery times.  

 

3.1 BACKGROUND 

One of the best examples of time-sensitive deliveries are health related products and services. 

Due to the availability of data and without loss of generality, the following sections study the 

modeling of time-sensitive medical supplies. The delivery of medical supplies is an area that 

has sparked high interest because such supplies are often subject to strict temporal constraints. 

For example, drones have already been employed for the delivery of medical supplies in 

Rwanda, a country that experiences heavy rains that often lead to road impassibility (Ministry 

of Infrastructure, 2012). Hospital supply chains in Rwanda now utilize drones for the delivery 

of blood from central storage facilities (Chen, 2017) (Denby, 2019). While blood deliveries are 

time-sensitive, some medical supplies are subject to even more stringent time considerations.  

The COVID-19 and the consequent lockdown have temporality remove some regulatory 

barriers for the deployment of drones. Drones are now being tested in several states such as 

Florida, North Carolina, North Dakota and Virginia to deliver prescriptions, and there is a 

promising trial in Baltimore to deliver kidneys for transplants (Scalea, et al., 2018).  Even 

though there is a wide range of drone applications in the health sector, this research and case 

study focuses on time-sensitive cardiac arrests.  

 

Cardiac defibrillation (Brooks, et al., 2010) needs to be administered minutes after diagnosis to 

avoid patient death, but a majority (63%) of cardiac arrest cases occur outside of hospitals 

where defibrillators are not readily available. The survival rate for out-of-hospital cardiac 

arrest (OHCA) in 2016 was 12%, almost half that of the in-hospital rate (25%) (American 

Heart Association, 2018). Currently, automatic external defibrillators (AED) are 1.1 kg (2.4 

lb), take just 1.77 L (108 in3) of space, and come with instructions to guide non-medical 

persons through the machine’s use. This makes AEDs an ideal candidate for drone delivery. 

However, the seriousness of cardiac arrest puts tight constraints on adequate arrival times. 

Even in hospitals, defibrillation survival rates after 3 minutes are reduced from 39% to 22%, 

and each additional minute reduces the chance of survival by approximately 4% (Chan, et al., 

2008). Currently, the average ground-based (ambulance) emergency response time in the 

United States is much longer than three minutes, with a mean of 7.0, 7.7, and 14.5 minutes for 

urban, suburban, and rural areas, respectively (Mell, et al., 2017). As drones are not subject to 

the typical ground road infrastructure restrictions, they may have a higher probability of timely 

response.  
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Pilots for medical supply deliveries using drones have begun in the United States (Glover & 

Colton, 2019), and recent research into drone deliveries of AEDs has attempted to quantify 

delivery times, estimate mortality rates, and optimize delivery networks through theoretical 

models (Claesson, et al., 2017) (Pulver & Wei, 2018) (Boutilier, et al., 2017). These studies 

have provided useful tools for AED delivery but have ignored key factors, such as weather. 

Such exclusions and the lack of real-world data means the viability of drone deliveries for 

time-sensitive supplies remains an open question.  

 

This research focuses on drone deliveries of AEDs for OHCA and fills a gap in recent research 

by using real-world data to model and assess the impact of weather on drone delivery 

reliability and to quantify the impact of fleet size and population on failure rates. Determining 

the number of drones required to service an area is a difficult challenge as the rate of cardiac 

events for an area is dependent on population size and time of day (Brooks, et al., 2010). 

This research: first, models demand and estimates failure rates as a function of drone fleet size 

and population for two types of drone operations: battery recharging and battery swapping; 

second, model temperature, precipitation, and wind using historical data from Portland, OR; 

and third, quantifies the impact of temperature, precipitation, and wind on the range and drone 

delivery failure. Conclusions, based on results, are discussed with recommendations for future 

studies.  

 

3.2 CASE STUDY 

The American Heart Association (AHA) provides a population mean (𝜇𝑁) and confidence 

intervals (CI) for the number of OHCA events in a year (American Heart Association, 2018). 

From the CI, a population variance (𝜎𝑁
2) may be calculated. 𝜇𝑁 and 𝜎𝑁

2 are for the US population 

as a whole (𝑁), not for a selected sample of 𝑛 people. For a sample population over a year, the 

mean and standard deviation for the number of OHCA may be calculated as: 

𝜇𝑁 = 356,461

𝜇𝑛 = (
𝑛

𝑁
) 𝜇𝑁

𝜎𝑁 = 3,067

𝜎𝑛 = √(
𝑛

𝑁
)𝜎𝑁

2  

Modeling the number of occurrences in a given time interval is a common application of the 

Poisson distribution with parameter 𝜆𝑛. To capture the variation of 𝜆𝑛 for a given population, 𝜆𝑛 

is also simulated using a Gamma distribution with shape and rate parameters 𝛼 and 𝛽, 

respectively. In Bayesian statistics, the Gamma distribution is the conjugate prior for Poisson, 

and equations for the mean and variance may be defined as follows (Casella & Berger, 2002). 

𝐸[𝜆𝑛] = 𝜇𝑛 =
𝛼

𝛽
𝑉𝑎𝑟[𝜆𝑛] = 𝜎𝑛

2 =
𝛼

𝛽2
  

Solving for 𝛼 and 𝛽, the parameters of the gamma distribution for 𝜆𝑛 are: 
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𝛼 =
𝜇𝑛
2

𝜎𝑛
2 =

((
𝑛

𝑁
)𝜇𝑁)

2

(
𝑛

𝑁
)𝜎𝑁
2
= (

𝑛

𝑁
)
𝜇𝑁
2

𝜎𝑁
2 𝛽 =

𝜇𝑛

𝜎𝑛
2 =

(
𝑛

𝑁
)𝜇𝑁

(
𝑛

𝑁
)𝜎𝑁
2
=
𝜇𝑁

𝜎𝑁
2
  

For any population, 𝑛, the number of cardiac events in a year may be simulated using: 

𝜆𝑛 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝛼 = (
𝑛

𝑁
)
𝜇𝑁
2

𝜎𝑁
2 , 𝛽 =

𝜇𝑁

𝜎𝑁
2)   

Given this formulation, random OHCA events are simulated using a Poisson distribution with 

rate parameter, 𝜆𝑛, defined by AHA data. The above provides estimates for a full year. However, 

the number of OHCA is also temporally dependent.  

There is no statistically significant variation across months or seasons, but day-of-week and 

time-of-day do have significant variation. Incidence rate ratios (IRR) with 95% confidence 

intervals are used for simulation, where the highest increases are seen on Mondays [1.18, 1.38] 

and during the 8:00 AM to 9:00 AM hour [1.96, 2.59] (Nordenskjöld, et al., 2019). Combined, 

Monday mornings have an average rate increase of 2.91 over the yearly average OHCA rate. 

Normal distributions are assumed for each IRR, based on the Central Limit Theorem of 

probability (Casella & Berger, 2002), and the time between consecutive OHCA events may be 

simulated utilizing a Poisson process of rate 𝜆𝑛.   

Figure 3 shows the asymmetry of the distribution around the mean for the time between events as 

a function of population size: for US average demand rate (left) and rate on Monday between 

8:00 AM and 9:00 AM (right) 

 

      

 

Figure 3 Time between consecutive OHCA events versus population  
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3.3 FLEET SIZE, DRONE REPOSITIONING, AND BATTERY 

SWAPPING TIMES 

The number of required drones is based on the shortest time between events, given the nearly 

three-times increase over the average rates for Monday mornings, but also on the time it takes to 

serve a patient and reposition a drone. The calculated number of drones is, therefore the 

minimum required during peak demand and above the minimum for all other days-of-the-week 

and times-of-day. Two options are considered: in-drone battery recharging and battery swapping. 

For this study, we assume that a high-performance multi-copter MD4-3000 drone is utilized. 

Drone specifications are given in Table 6 (Figliozzi, 2017). 

The optimal range is assumed to be 50 km (31 mi), which assumes ideal weather conditions and 

a cruise speed of 20 m/s (44.7 mph). With a 1.1 kg (2.4 lb) payload, the flight time will be 

approximately 42 minutes. The battery capacity of drones used in this study has a 21,000mAh 

(microdrones, 2019). The LiPo battery has a recommended recharge rate of 2A at greater than 

90% charge efficiency (Alibaba, 2019). Therefore, the charge time following a complete drain of 

the battery for one of these drones is between 10 hours 30 minutes and 11 hours 40 minutes. 

However, batteries will not experience a full drain each time they are used, and there will be 

additional variability in the charge times based on distance traveled.  

 

Table 6 MD4-3000 drone characteristics 

3.4 SPECIFICATION 3.5 MD4-3000 

Take off / Gross weight 𝑚 11.1 kg (24.5 lb) 

Tare / Curb Weight 𝑚𝑡 10.0 kg (22.1 lb) 

Payload 𝑚𝑙 1.1 kg (2.4 lb) 

Empty weight factor 𝑐𝑚 0.90 

Battery/Fuel Storage Capacity* 777 wh 

Loaded Flight Time (𝑚𝑙 = 1.1 

kg) 

42 minutes 

Range (𝑚𝑙 = 1.1 kg) 50 km (31 mi) 

 

Given the random distribution of OHCA events and the combination of service and charge time 

of batteries, M/M/c queuing theory may be employed to determine the number of needed drones. 

For service times, it is assumed that a drone must stay with a patient until paramedics arrive (an 

average of 8 minutes) (Mell, et al., 2017), stabilize the patient (averaging 2 minutes), have the 

automatic defibrillator repackaged for the return trip (averaging 5 minutes), and return to base 

(averaging 5 minutes of flight and landing time). In addition to these 20 minutes of service times, 

drones are additionally unavailable to service new patients while their batteries are recharged 

(case 1) or swapped for a fully charged battery (case 2).  
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In case 1, given an average of 10 minutes of active flight time to and from a patient and the 

available flight time of 42 minutes, the average recharge time will be about 2 hours 40 minutes. 

Adding the 20 minutes of service time, the average usage time is 3 hours, which corresponds to 

an average of 8 possible services per day. Using an M/M/c queueing model, failure was defined 

as the probability that there will be one or more people in the queue (i.e., a person is waiting to 

be served due to drone unavailability). The rate of OHCA (𝜆𝑛) used is the worst-case scenario 

(i.e., 8:00 AM – 9:00 AM on Mondays). Figure 4 shows failure probability (plotted 

logarithmically) for case 1 (battery recharging), as a function of population and the number of 

available drones.  In case 2 (battery swapping), after 20 minutes of average service time, each 

drone is assumed unavailable for an additional 10 minutes (30 minutes total) to allow for the 

battery to be swapped with a fully charged battery.  In both cases the results are for demand rate 

on Mondays between 8:00 AM – 9:00 AM.  

Figure 5 gives failure probabilities for case 2 given M/M/c queuing theory using the Monday 

morning rate. By swapping batteries, the number of possible services per day increases by a 

factor of 6, from 8 (in case 1, battery recharging) to 48 (in case 2, battery swapping)  given the 

demand rate on Mondays between 8:00 AM – 9:00 AM. 

 

 

Figure 4  Battery Recharging failure probability vs. population and number of drones  

 

 

 

Figure 5  Battery Swapping failure probability vs population and number of drones  
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For 100,000 people on Monday mornings, a single drone would fail to provide service 10.9% of 

the time in case 1 versus just 1.8% of the time in case 2. Picking an acceptable failure rate for 

vital medical supplies of <0.1%, three drones are required in case 1, and two drones are required 

in case 2. For 300,000 people and a <0.01% failure rate, five and three drones are case 1 and 2, 

respectively. This difference corresponds to notable cost savings; each drone can cost between 

$50,000 – $100,000 (Aniwaa, 2019), but batteries cost between $300 – $600 (Alibaba, 2019). 

For 300,000 people and a failure rate of <0.01%, consider a theoretical requirement of one extra 

drone in both cases; and one or ten spare batteries per drone in cases 1 and 2, respectively. 

Equipment costs are 30% less in case 2 than in case 1. Lastly, other extreme conditions, such as 

those caused by wildfires, are also a potential issue, but outside the scope of the paper given the 

lack of detailed long-term wildfire data, the unique complexity of this topic, and the unusual set 

of operating constraints. A further potential issue is maintenance time and mechanical reliability 

of drones, but this topic is also outside of the scope of the paper due to the lack of drone 

reliability data. 
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4.0 WEATHER MODELING 

The drone range and speed is affected by weather conditions, in particular wind intensity and 

direction, temperature, and rain or snow. This section presents a statistical approach to process 

whether data for drone delivery models.    

 

4.1 MODELING TEMPERATURE DATA AND DISTRIBUTIONS 

Historical temperature data for a region typically gives a mean, high, and low temperature for 

each daily record. Figure 6 shows a histogram and normal approximation of January and July 

daily high temperatures from historical tables from Portland, OR. Given the shape of the 

temperature histograms, each month’s high and low temperatures are assumed to follow a normal 

distribution. Therefore, historical data provides the ability to calculate means for high and low 

temperatures and their respective standard deviations for simulation. However, on a given day, 

high and low temperatures are highly correlated, and this must be considered for simulations.  

 

 
Figure 6  Historical high temperatures for January and July 

 

To generate a pair of correlated random normal variables, 𝑦1 and 𝑦2, with known means, 𝜇1 and 

𝜇2, variances, 𝜎1
2 and 𝜎2

2, and correlation, 𝜌, the following may be used (Rickert, 2016): 

𝑥1 = 𝒩(0,1)

𝑥2 = 𝒩(0,1)

𝑦1 = 𝜇1 + 𝑥1𝜎1

𝑦2 = 𝜇2 + 𝜎2(𝑥1𝜌 + 𝑥2√1 − 𝜌2)
  

𝑦1 and 𝑦2 are the simulated low and high temperatures for a given day and will have the desired 

means, variances, and correlations. However, it is still possible for the high and low temperature 

to be reversed (i.e. 𝑦1 > 𝑦2). Simply swapping the values, such that all smaller values of the pair 

are in one list and larger values are in the other, will increase the correlation. Through 
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simulation, this increase in correlation can be measured, and the ratio of the simulated correlation 
(𝜌𝑠) and actual correlation (𝜌) maybe used to correct for the artificial increase.   

𝜌′ =
𝜌

(
𝜌𝑠
𝜌
)
= 𝜌 (

𝜌

𝜌𝑠
) =

𝜌2

𝜌𝑠
  

Using 𝜌′ in place of 𝜌 and swapping paired values, as described above, results in a paired list of 

high and low temperatures with correlation 𝜌. Monthly trends from Portland’s historical data are 

shown in Table 7, with both the observed correlation from the data (𝜌) and corrected correlation 

(𝜌′) used for simulation. Unfortunately, these calculated means would be low if used for future 

predictions. Within the data set used in this analysis, there is a statistically significant positive 

slope for average high and average low temperatures of 0.01591 and 0.0228, respectively. For 

standard deviations, the slopes are statistically insignificant. Equations for the increase in mean 

highs and lows, compared to the aggregated historical averages, are given below, where 𝑦 is the 

current year.  

Δ𝑡𝑙𝑜 = 0.0228𝑦 − 45.1480 Δ𝑡ℎ𝑖 = 0.0159𝑦 − 31.4535  

 

Table 7 Historical monthly high and low temperatures (°C) and correlation factors 

 

Month 

High 

Temperature Low Temperature Correlation 

Mean 

Std. 

Dev. Mean 

Std. 

Dev. Observed 

Correcte

d 

January 7.41 4.04 1.19 4.12 0.788 0.782 

February 10.34 3.61 2.31 3.52 0.534 0.523 

March 13.08 3.76 3.70 2.98 0.243 0.225 

April 16.09 4.36 5.64 2.77 0.285 0.271 

May 19.80 4.99 8.76 2.70 0.390 0.377 

June 22.82 4.82 11.68 2.31 0.418 0.409 

July 26.70 4.64 13.84 2.11 0.422 0.420 

August 26.69 4.53 13.95 2.21 0.286 0.282 

Septembe

r 23.92 4.79 11.26 2.82 0.169 0.158 

October 17.61 4.10 7.59 3.23 0.286 0.269 

Novembe

r 11.40 3.50 4.25 3.84 0.639 0.629 

Decembe

r 7.80 3.65 1.90 3.77 0.775 0.769 

 

The probabilities that the average daily and 8:00 AM temperatures are less than 0°C is important 

to the calculations of precipitation; as such, the increases are also important for future 
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predictions. For any normally distributed variable, 𝑋, multiplied by a constant, 𝑐, the resulting 

distribution 𝑐𝑋 is also normal with mean, 𝑐𝜇, and variance, 𝑐2𝜎2. 

𝑋 ∼ 𝒩(𝜇, 𝜎2) 𝑐𝑋 ∼ 𝒩(𝑐𝜇, 𝑐2𝜎2)  

In addition, the sum of any two normally distributed variables, 𝑋 and 𝑌, with means, 𝜇1 and 𝜇2, 

variances, 𝜎1
2 and 𝜎2

2, and correlation, 𝜌, will also be normal. 

𝑋 + 𝑌 ∼ 𝒩(𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2 + 2𝜌𝜎1𝜎2)  

For average daily temperature, the distribution of average temperature may be found by 

averaging the distributions of high and low temperatures. Given means, 𝜇1 and 𝜇2, variances, 𝜎1
2 

and 𝜎2
2, and correlation, 𝜌, the distribution of the average daily temperature will be: 

𝒩(
𝜇1

2
+
𝜇2

2
,
𝜎1
2

22
+
𝜎2
2

22
+ 2𝜌 (

𝜎1

2
) (

𝜎2

2
)) = 𝒩 (

𝜇1+𝜇2

2
,
𝜎1
2+𝜎2

2

22
+
𝜌𝜎1𝜎2

2
)   

The probability that the average daily temperature is less than 0°C may be directly calculated for 

this normal distribution. This section presents the general statistical framework to analyze 

temperatures. In the specific application and case study, at 8:00 AM (worst case scenario), the 

probability is based only on the distribution of low temperatures.  

 

 

4.2 MODELING PRECIPITATION DATA AND DISTRIBUTIONS 

Many regions have systems to measure rainfall. Often, the amount of rain per day and the 

amount of snow per day are included. For precipitation generally in the US, 13 inches (33 cm) of 

snow equals one inch of precipitation. This conversion allows for total precipitation per day to be 

calculated. The same data weather data set for Portland, OR, provided historical rain and snow 

measurements, which were combined.  



 

26 

 

Table 8 shows the estimates for the mean and variance of precipitation on days with rainfall, and 

the calculated percent of days without rainfall for each month. 
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Table 8 Monthly rain statistics and probability of days with no rain    

 

Probability of  

Zero Precip. 

on a Given 

Day 

Daily Precip. 

Rate 

[Rate > 𝟎 mm] 

Month Mean Variance 

January 32.6% 7.7 77.1 

February 36.6% 6.4 59.2 

March 35.3% 5.6 35.5 

April 42.0% 4.2 21.7 

May 54.0% 4.7 30.1 

June 64.6% 4.4 28.8 

July 86.6% 3.7 22.8 

August 83.8% 4.6 34.7 

September 72.8% 5.6 55.9 

October 52.7% 6.5 61.6 

November 32.7% 7.7 83.2 

December 31.4% 8.0 81.9 

 

As with temperature, precipitation may be aggregated by month to account for monthly variation 

and sub-divided into two distributions: Bernoulli probability of precipitation versus no 

precipitation, and a Gamma distribution for the quantity of rain, given some rainfall (Li, et al., 

2013). Given the daily average, 𝜇, and daily variation, 𝜎2, of rainfall, the gamma parameters, 𝛼 

and 𝛽 may be calculated directly.  

𝛼 =
𝜇2

𝜎2
𝛽 =

𝜇

𝜎2
  

A scalar constant applied to a Gamma distribution is still Gamma. For an hourly distribution, 𝛼 

would remain the same, but the rate parameter, 𝛽, would be multiplied by 24. To separate 

precipitation into rainfall and snow, the current temperature is needed. The correlated pair of 

high and low temperatures for the study period are used in combination with the mean correction 

factor.  

For example, there is a 9.2% probability that the average daily temperature in January 2020 will 

be less than 0°C and a 32.6% probability of no rain. As such, the probability of snow is 6.2%, 

which corresponds to an average of 1.9 snowy days in January. However, during 8:00 AM, there 

is a 30.5% probability temperatures are below 0°C in 2020. Given the same probability of some 

rain, there is a 20.6% probability of snow during that hour, which corresponds to 6.4 mornings 

with some snow.  

 

 

4.3 MODELING WIND DATA AND DISTRIBUTIONS 

A key factor that influences aviation performance is wind, and drones are highly susceptible due 

to their limited power and weight. The distribution of wind speeds may be modeled using a 

variety of known probability distributions with the Weibull ranking among the best (Qin, et al., 
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2011); however, many models have been shown to be adequate. The creation of wind models is 

dependent on both the amount of historical data and the temporal granularity. For example, the 

inclusion of only a daily mean will not be enough to define most parametric models. A 

generalized understanding of wind effects does not require the accuracy of many climate models. 

As such, the choice of a probability distribution should be based on what can provide a 

reasonable approximation based on available data (NOAA, 2019).   

There are long time series for Portland wind data, including historical average speeds, maximum 

gusts, percent calm, and direction. Gradient descent optimization was employed to find 

distribution parameters that provided reasonable approximations of historical trends. In Portland, 

different times of the year have different distributions of wind, which will directly influence 

failure odds. The distribution of wind speeds over a year is given in Figure 7. 

 

 
Figure 7 Simulated mean and confidence interval of wind speed in Portland, OR 

 

Wind direction is also important. In Portland, winds mostly blow in the ESE direction during the 

winter months and the NW direction during the summer months (see Figure 8). This factor is 

important for determining a drone’s range at different times of the year. In January, areas to the 

NW of a depot will be restricted by a headwind, while the opposite is true in July. 
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 Figure 8 Probability of wind direction for each month in Portland, OR 
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5.0 RANGE RELIABILITY MODELING 1 

Range is a key feature of drones that affects their cost as well as their competitiveness as a 2 

transportation mode. This section discusses how range is affected by wind, precipitation, and 3 

temperature.   4 

 5 

5.1 MODELING RANGE 6 

 7 

The range of a drone is determined by its weight, flying efficiency, and battery capacity. For 8 

applications with a central hub, this range is half of the distance a drone can travel, as a return 9 

trip must be accommodated. The following gives the energy necessary for level flight 10 

(Figliozzi, 2017): 11 

 𝑝𝑙(𝑡) =
(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )𝑔

𝜗(𝑠)𝜂𝑝
 𝑑 [unitless < 1] (1) 12 

where: 13 
𝑝𝑙 = power required for level flight [watts],

𝑡 = travel time [seconds] = (𝑑 𝑠⁄ ),
𝑚𝑏 = drone battery mass [kg],

𝑚𝑙 = drone load (defibrillator) mass [kg],

𝑚𝑡 = drone mass tare (i. e. without battery and load) [kg]

𝑑 = travel distance [m],
𝜗(𝑠) = lift ∶ to ∶ drag ratio, or (𝐿 𝐷⁄ ) [unitless],

𝑠 = travel speed [m], and
𝜂𝑝 = total drone power transfer efficiency.

,  14 

From (1) it is possible to observe that energy consumption is directly proportional to drone 15 

mass and travel time and distance. The range estimations of this research consider the 16 

defibrillator 1.1 kg (2.4 lb) payload. 17 

 18 

 19 

5.2 MODELING THE IMPACT OF TEMPERATURE 20 

Temperature can have a significant impact on drone performance because drone lithium-ion 21 

batteries show optimal performance at approximately 20°C (68°F) but perform significantly 22 

worse at lower temperatures (see Figure 9). For lithium batteries, the output voltage is 23 

dependent on its operating temperature (Samadani, 2015). In this study, battery available 24 

energy or capacity is assumed to decrease following a parabolic curve. The maximum (100%) 25 

will be at 20°C (68°F) and the minimum (50%) at -20°C (-4°F). At higher temperatures, the 26 

capacity decreases linearly from 100% to 95% from 20°C (68°F) to 55°C (131°F). Battery 27 

makers recommend no operation outside this temperature range (Alibaba, 2019). 28 

 29 



 

 31 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = {

−0.0003125𝑡2 + 0.0125𝑡 + 0.875 −20 < 𝑡 < 20

1 − .05 (
𝑡−20

55−20
)    20 ≤ 𝑡 < 55

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  1 

 2 
Figure 9 Battery capacity versus temperature and equations 3 

 4 

In addition, battery capacity degrades linearly with the number of cycles up to a point. Often, 5 

the degradation accelerates when a battery reaches 80% of optimal capacity. At this point, the 6 

battery is considered unreliable and no longer used. Prior to this point, the battery will have 7 

above 80% optimal capacity, but the exact amount will be unknown for any specific trip. As 8 

such, a random uniform distribution from 0.8 to 1.0 may be used in association with 9 

temperature for simulation to define the initial condition of the battery with an assumption 10 

that faulty or unreliable batteries will not be used. 11 

OHCA events are more frequent during the 8:00 AM hour, which is typically the coldest hour 12 

of the day. As such, only the distribution of low temperatures is needed in this study. Figure 13 

10 shows the means and confidence intervals for daily high and low temperatures.  14 

 15 

 16 
Figure 10 Means and confidence intervals for high and low temperatures by month 17 

 18 

Figure 11 shows the probability of failure as a function of the total distance traveled, 19 

assuming an ideal 42-minute flight time. The left and right edges of the shaded regions are 20 

defined using distributions of the low and high temperatures, respectively. The purple area is 21 

based on the yearly average highs and lows, while the blue region represents the worst-case 22 

(i.e., coldest) temperatures in January. The potential range of a drone will be half of the total 23 
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available flight distance, as return trips must be accommodated. The probability of failure is 1 

the percent of simulated trips that failed to reach a given range.  2 

 3 

 4 
Figure 11 Failure probability due to temperature and battery charge vs. flight distance 5 

 6 

Winter will have worst-case flight ranges as compared to the yearly averages. Yet, the range 7 

in the worst case is still larger than the maximum allowable due to time constraints for urgent 8 

medical deliveries. Even allowing for 14.5 minutes of flight time, the average ambulance 9 

arrival time in rural areas, more than 95% of drones will have enough battery for the 35 km 10 

(22 mi) trip, 17.5 km (11 mi) in each direction. 11 

In addition, the available range corresponds to a large service area. The 3-minute delivery 12 

area covers 40 km2 (15.7 mi2), while 7 minutes (the urban ambulance average response time) 13 

allow for an area of 222 km2 (86 mi2). This is functionally the size of many cities. Based on 14 

Portland weather conditions, large cities would require just a few drone hubs for full 15 

coverage.  16 

 17 

 18 

5.3 MODELING THE IMPACT OF PRECIPITATION  19 

Many modern drones advertise some resistance to rain. As such, not all precipitations events 20 

would be considered failures. Considering rain alone (i.e., no snow), defining a specific cutoff 21 

for the permitted amount of rain would result in different failure odds. Figure 12 shows 22 

probability failure (plotted logarithmically) as a function of the maximum allowable 23 

precipitation rate. As an example, if drones are not sent during heavy rain, then drones will be 24 

unavailable (a failure condition) 4% of the time in January and <0.1% of the time in July. 25 

 26 

 27 
Figure 12 Probability of failure as a function of rainfall rate cutoff  28 

 29 
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Most drone manufacturers recommend not to fly drones during snowfalls. As such, all snowy 1 

weather would cause a failure condition. However, if the amount of snow is considered such 2 

that some snowfall is acceptable, the failure rates are also dependent on the precipitation 3 

cutoff (see Figure 13).  4 

 5 

 6 
 Figure 13 Probability of failure as a function of snowfall rate cutoff. 7 

 8 

The cutoff points for snow and rain do not need to be equal. For example, if drones are 9 

permitted to fly in snow up to 10mm/day (light snow) and rain up to 25mm/day (light and 10 

moderate rain), then drones in January will be unavailable about 2% of the time due to snow 11 

and about 4% of the time due to rain. 12 

 13 

5.4 MODELING THE IMPACT OF WIND 14 

For winds, the worst case is a headwind where the flight path is directly against the wind’s 15 

direction of travel. In the best case, the drone has an increased speed due to a tailwind. Given 16 

a wind bearing, its speed, and a drone’s flight speed, an angle-side-side triangle is formed 17 

(Figure 14). This arrangement requires an algorithm to solve as there may be 0, 1, or 2 18 

possible answers. The following algorithm may be used to solve for the fastest feasible flight 19 

path, if possible. It combines the law of cosines and solves for the unknown using the 20 

quadratic formula. 𝑠𝑤 is wind speed, 𝑠𝑑 is drone speed, and 𝑟𝑤 is the angle between wind 21 

bearing and destination bearing. 22 

 23 

 24 
Figure 14 Setup and notation to solve an angle-side-side triangle.  25 

 26 

Beginning with the law of cosines, where side 𝐴, side 𝐵, and angle 𝛽 are known, but 𝐶 is 27 

unknown. Solve for 0, then put in the quadratic form with 𝐶 as the unknown.  28 
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𝐵2 = 𝐴2 + 𝐶2 − 2𝐴𝐶 cos(𝛽)

0 = 𝐴2 + 𝐶2 − 2𝐴𝐶 cos(𝛽) − 𝐵2

           = (1)𝐶2 + (−2𝐴 cos(𝛽))𝐶 + (𝐴2 − 𝐵2)

   1 

Solve for 𝐶 using the quadratic formula and simplify. 2 

𝐶 = 
−(−2𝐴cos(𝛽))±√(−2𝐴cos(𝛽))2−4(1)(𝐴2−𝐵2)

2(1)

  = 
2𝐴 cos(𝛽)±2√𝐴2 cos2(𝛽)−(𝐴2−𝐵2)

2

  = 𝐴 cos(𝛽) ± √𝐵2 + 𝐴2(cos2(𝛽) − 1)

  = 𝐴 cos(𝛽) ± √𝐵2 − 𝐴2 sin2(𝛽)

   3 

Mathematically, there are potentially two solutions, 𝐶1 and 𝐶2.  4 

𝐶1 = 𝐴 cos(𝛽) + √𝐵2 − 𝐴2 sin2(𝛽)

      𝐶2 = 𝐴 cos(𝛽) − √𝐵2 − 𝐴2 sin2(𝛽)
   5 

However, in the context of flight speed triangles, negative and imaginary solutions are not 6 

applicable, and the fastest speed is preferred. Given that 𝐶1 ≥ 𝐶2 for real solutions, 𝐶1 is used, 7 

given that the quantity under the square root is greater than 0. 8 

 9 

As an example, assume a drone speed of 20mps, wind speed of 30mps, and a wind direction 10 

30° away from the travel direction, both triangles in Figure 15 are valid solutions where the 11 

drone flies at a 20mps and is able to reach the destination. The key factor is the effective 12 

travel speeds and initial flight bearings. A drone using the initial travel bearing from the 13 

second triangle would reach its destination three times faster than a drone using the initial 14 

bearing from the first. 15 

 16 

 17 

 18 
  Figure 15 Two valid solutions to an angle-side-side triangle problem 19 

 20 

For headwind and tailwind simulations, flight times are held constant for arbitrarily selected 21 

two-minute and ten-minute cases. For each trial, distance traveled within the time-limit is 22 

recorded. The probability of delivery failures due to wind was calculated based on the percent 23 

of trips that fail to reach a given distance within the allowable time. The shaded regions of 24 

Figure 16 and Figure 17 show a range of failure probabilities between a simulated headwind 25 

versus simulated tailwind and the result using a random bearing as the central line. As the 26 
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flight time increases, the probability of failure also increases. In Figure 17, the y-axis of 1 

Figure 16 is transformed from linear to logarithmic. 2 

At a 20% acceptable fail rate for 2-minute deliveries, the worst case for the range has 3 

decreased from 2.4 km (1.5 mi) to about 2 km (1.2 mi); a reduction of 16%. At a 5% 4 

acceptable failure rate, the range is further reduced to about 1.3 km (0.8 mi). While the 5 

theoretical range of drones is large (see Figure 11), the practical range for timely deliveries is 6 

a limiting factor. In Figure 17, the y-axis of Figure 16 is transformed from linear to 7 

logarithmic. 8 

 9 

 10 
Figure 16 Probability of failure versus radius due to wind with linear y-axis 11 

 12 

 13 
Figure 17 Probability of failure versus radius due to wind with logarithmic y-axis 14 

Figure 17 shows that the average potential failure from wind is above 0.1% for a 2 minute or a 15 

10-minute trip. Wind plays a key role in determining acceptable failure rates and for 16 

determining a potential range for drone deliveries. Notably, having multiple hubs will reduce 17 

failure rates from the wind as different hubs may be employed depending on wind direction. 18 

Headwinds and potential failure from one direction may be tailwinds and success from 19 

another. 20 

  21 
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6.0 ENERGY AND EMISSIONS MODELING 1 

Drones can be the most efficient and sustainable mode of transportation under certain 2 

conditions. This section discusses the competitiveness of drones against  ground vehicles: 3 

conventional vans with internal combustion engines (ICE), electric vans (EV), and new 4 

sidewalk  and roadway autonomous delivery robots (SADR and RADR respectively). A 5 

formulation is proposed to compare different scenarios.  6 

 7 

6.1 BACKGROUND 8 

Vehicle electrification has also been studied as potential and cost-effective way to reduce urban 9 

freight emissions (Feng and Figliozzi, 2012; Lee et al., 2013; Davis and Figliozzi, 2013). Other 10 

studies (Jennings and Figliozzi, 2019 and 2020) analyzed the regulation and characteristics of 11 

sidewalk and road ADRs (respectively) in the USA and studied potential time and cost savings. 12 

When compared to a conventional human-driven delivery van, sidewalk ADRs can reduce cost, 13 

time, and vehicle travel in some instances. Road delivery robots are also more economical when 14 

delivery routes are relatively short. However, due to their limited range, vehicle miles tend to 15 

increase in most scenarios. The rate and speed of adoption of RADRs will greatly depend on 16 

costs and ease of entry into the delivery market as discussed by studies focusing on the adoption 17 

of autonomous trucks by freight organizations (Talebian and Mishra, 2018; Simpson et al. 18 

2019).  19 

 20 

Figliozzi (2017) derives analytical formulas to compare operational and lifecycle emissions and 21 

energy consumptions of drones, diesel van, electric vans, and tricycles. Figliozzi (2017) shows 22 

that it is possible to find emissions breakeven points as a function of customers in a route, 23 

efficiency of the vehicles, distance to customers, density of delivery area, and drone 24 

size/payload. Air drones are more CO2 efficient for small payloads and single deliveries in rural 25 

areas but less efficient for large payloads or when many customers are grouped in dense urban 26 

areas. Drones consume less energy and emissions per package-km than delivery vans. 27 

Kirschstein (2020) provide a more detailed energy consumption model including takeoff, level 28 

flight, hovering, and landing; similar results were obtained, i.e. drones requires more energy in 29 

urban areas with high customer density and less energy in rural settings low customer density 30 

that trucks.      31 

6.2 VEHICLE CHARACTERISTICS 32 

ADRs are electric powered ground vehicles that can deliver items or packages to customers 33 

without the intervention of a delivery person. ADRs can be divided into two types. Sidewalk 34 

autonomous delivery robots (SADRs) are pedestrian sized robots that only utilize sidewalks or 35 

pedestrian paths. On-road or simply road autonomous delivery robots (RADRs) are vehicles 36 

that travel on roadways shared with conventional vehicles. ADRs use sensors and navigation 37 

technology that allow them to travel on roads and sidewalks without a driver or on-site delivery 38 

staff. The ground vehicles studied in this research have already been utilized in previous studies. 39 

Starship Technologies is producing the SADR that has been deployed in most locations and 40 

have received ample media coverage (Jennings and Figliozzi, 2019). Among the companies 41 

prototyping RADRs there are two that stand out: NURO and uDelv (Jennings and Figliozzi, 42 

2020). The chosen high-performance drone, MD4-3000, has already been analyzed by Figliozzi 43 

(2017) where it was compared against the performance of tricycles, a typical delivery diesel 44 



 

 37 

van (Dodge RAM) utilized in the US, and an electric van (Renault Kangoo) utilized in Europe. 1 

The Dogde RAM is the only internal combustion engine (ICE) vehicle in Table 9.  2 

 3 

Table 9 presents a summary of vehicle characteristics. The drone has the lowest tare and 4 

payload but the SADR has the lowest range and speed. The RADRs have less limitations 5 

regarding payload and range but these are still substantially lower than the payload and range 6 

of a conventional van. The electric van has relatively low energy consumption but reasonable 7 

performance in terms of payload and range for short and medium route lengths. SADRs have 8 

limited range and can be complemented by specialized vans usually called “mothership” vans, 9 

that can be utilized to drop off and pick up several SADRs. The mothership van is not an 10 

autonomous vehicle and requires a driver. Henceforward specialized vans that carry SADRs 11 

will be denoted simply as motherships. If SADRs are serving customers nearby, i.e. the service 12 

area is not far away, a mothership is not necessary which simplifies the operation of the 13 

sidewalk deliver robot and considerably reduces road distance traveled, energy consumption, 14 

and emissions. Unlike SADRs, even small RADRs are designed to share roadways with 15 

conventional motorized vehicles. Hence RADRs are not dependent on a mothership.   16 

 17 

Table 9 - Key Vehicle Characteristics 18 

Vehicle Tare (kg) 

Max. 

Speed 

(kph) 

Payload 

(kg) 

Range 

(km) 

Energy 

consumption 

(wh/km) 

Starship 18.1 6.4 18.1 6.4 24.7 

Nuro 680 56 110 16.1 139.6 

uDelv 1890 97 590 97 193.9 

MD4-3000 10.2 72 5.0 36 21.6 

Renault Kangoo 

EV 

1300-1430 160 650-800 120* 205 

Dodge RAM 2170 180 1890 695 1,016 

* 120 km under extreme winter conditions, 199 km under temperate conditions  19 

 20 

6.3 METHODOLOGY  21 

 22 

In this section the methodology used for comparing the travel, energy, and emissions 23 

performance is presented. The methodology is based on continuous approximations. As 24 

indicated by Daganzo et al. (2012) these types of analytical approximations are appropriate to 25 

address big picture questions because they are parsimonious, tractable, and yet realistic when 26 

the main tradeoffs are included. This type of modeling approach has been successfully used in 27 

the past by many authors to model urban deliveries and logistic problems (Ansari et al., 2018).  28 

 29 

6.3.1 Formulation 30 

 31 

The constraints analyzed in this research include range, duration, capacity, and number of 32 

customers served.  The notation used is presented below. 33 

𝑛 = Number of stops or delivery locations 34 
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𝑚 = Number of vehicles required to deliver to  𝑛 customers 1 

𝑎 = Area (units length squared) of the service area (SA) where 𝑛 customers reside 2 

𝛿 =  𝑛/𝑎 , customer density  3 

d = Service area to depot distance  4 

R = Effective vehicle range   5 

Q = Vehicle capacity in number of customers   6 

𝑣 = Average speed of the vehicle in the long haul  7 

𝑣𝑙 = Average speed of the vehicle in the local service area   8 

𝑇 = Maximum duration of shift or tour (same for all vehicle types) 9 

𝑡0 = Time to deliver at a customer including time to pick up a parcel   10 

𝑡𝑢 = Unload time  11 

𝑡 = 𝑡0 + 𝑡𝑢 = Total time vehicle is idle (i.e. not traveling) during a delivery 12 

𝑘𝑙 = Routing parameter  13 

e = Energy consumption per unit distance (wh/km) 14 

𝜅 = Carbon emissions per unit of energy (CO2 kg/wh) 15 

 𝜀 = ratio between store order size and delivery order size 16 

By utilizing continuous approximations to estimate the average distance 𝑙(𝑛,𝑚) traveled by a 17 

fleet of vehicles (Daganzo et al. (2012); Figliozzi, 2008) it is possible to write the following 18 

fleet size and route duration constrains, respectively: 19 

 20 

𝑚 ≥ ⌈
𝑘𝑙√𝑎𝑛

𝑅− 2𝑑 
⌉             21 

 22 

𝑇 ≥  (
2𝑑

𝑣
+
𝑘𝑙
𝑚𝑣𝑙

√𝑎𝑛) +
𝑡 𝑛

𝑚
           23 

 24 

It is assumed that all the vehicles depart the depot at the beginning of the time period 𝑇. Hence, 25 

the fleet size 𝑚  is equal to the number of tours.   26 

 27 

In some scenarios, the constraint is to serve a maximum number of customers 𝑛 within the 28 

allowed time 𝑇  with a given fleet size. For this purpose, a novel equation is developed. The 29 

equation that provides this number is obtained by solving for n. The result is the following 30 

expression: 31 

 32 

𝑛 =  ⌊
2(𝜏 −

2𝑑

𝑣
)(
𝑡

𝑚
)+(

𝑘𝑙√𝑎 

𝑚𝑣𝑙 
)
2

2 (
𝑡

𝑚
)
2 − (

4 (𝜏 −
2𝑑

𝑣
)(
𝑡

𝑚
)(
𝑘𝑙√𝑎 

𝑚𝑣𝑙 
)
2

+(
𝑘𝑙√𝑎 

𝑚𝑣𝑙 
)
4

4 (
𝑡

𝑚
)
4  )

1/2

⌋               33 

The floor function is used to avoid a fractional number of customers. The derivation of the 34 

formula is presented in the Appendix. The capacity constraint is simply stated as 𝑚 ≥35 
⌈𝑛/𝑄⌉         .  36 

 37 



 

 39 

The above formulas  assume that when several vehicles are utilized, 𝑚 > 1, the service area is 1 

partitioned into homogenous areas as described by Daganzo (1984).  2 

 3 

The energy consumed 𝐸  and carbon emissions 𝛫  produced by 𝑚  vehicles are calculated 4 

utilizing the travel distance multiplied by the corresponding energy and emission factors for 5 

each vehicle type with 𝑚  that satisfy the range, capacity, time, and number of delivery 6 

constraints. 7 

 8 

𝛫 = 𝜅  𝐸 = 𝜅  𝑒  (2𝑑𝑚 + 𝑘𝑙√𝑎𝑛)       9 

 10 

 11 

6.3.2 Data, Assumptions, and Scenario Design 12 

 13 

Vehicle efficiencies are analyzed utilizing two approaches: (a) estimating efficiency of each 14 

vehicle when delivery area size, delivery time, and distance from the depot vary and (b) 15 

estimating the efficiency of the vehicles when customer density or number of deliveries change.  16 

In the latter approach the number of customers served varies from 𝑛 = 25 to 𝑛 = 200 and this 17 

interval includes the average number of package deliveries per conventional vehicle that is 18 

approximately 120. Vehicle specifications are drawn from manufacturer websites or press 19 

releases and parameters are representative of delivery conditions in urban and suburban areas 20 

 21 

The Starship SADR is assumed herein because it complies with US regulation and it is the most 22 

extensively tested SADR at the time of this writing. The Starship SADR range is approximately 23 

4 miles and a Starship is designed to carry up to three grocery bags or up to six small/medium 24 

packages – as a reference most Amazon packages parcels are less than five pounds or 2.3 kg 25 

(Forbes, 2019). SADRs are complemented by a mothership van. The mothership drop-offs or 26 

picks-up up to 8 SADRs per tour. The same formulas and constraints presented earlier in this 27 

section can be directly applied to the mothership but assuming that 𝑛 represents the number of 28 

SADRs and that the capacity of the mothership is eight SADRs. When the depot is at the center 29 

of the SA (𝑑 = 0), a mothership is not utilized. The drone always services one customer at the 30 

time hence the calculations of energy and emissions are straightforward since customers are not 31 

grouped in routes and distances are estimated as the crow flies (i.e. Euclidian). For ground 32 

vehicles, the Manhattan metric is assumed which is reflected in the value of the routing 33 

parameter 𝑘𝑙. 34 

 35 

The energy consumption coefficient per unit distance, denoted 𝑒, for each vehicle was estimated 36 

utilizing available battery and range information for the vehicles or manufacturers data. The 37 

values assumed for SADRs and RADRs are reasonable also according to other studies 38 

analyzing small ground robot energy consumption, for example Broderick et al. (2014). The 39 

following values are utilized in the numerical analysis: SADRs consume 24.7 wh/km, NUROs 40 

consume 140 wh/km, uDelvs consume 194 wh/km, electric vans (E-vans) consume 205 wh/km, 41 

and the electric mothership consume of 427 wh/km (currently the mothership can use a 42 

conventional internal combustion engine but an electric engine is assumed to facilitate future 43 

comparisons). The E-van and conventional ICE van values were obtained from the performance 44 

of the electric Renault Kangoo van and Dodge RAM (Figliozzi, 2017). The value for the 45 

mothership is obtained from the Mercedes Benz Sprinter cargo van that was modified to 46 

accommodate the SADRs shown in Figure 1 and assuming that the mothership utilizes an 47 

electric engine.  48 



 

 40 

Urban areas are complex environments for autonomous vehicles with many deliveries/stops 1 

and interactions with pedestrians and cyclists. Hence, it is likely that autonomous vehicles will 2 

be designed with high safety standards and would require extra time to park, unload/load, and 3 

avoid conflicts with pedestrians and/or cyclists. Hence additional minutes and a lower average 4 

speed are assumed for autonomous vehicles. The following average delivery times 𝑡  per 5 

customer are assumed: five minutes for autonomous SADRs, Nuros, Udelvs, and drone; 3 6 

minutes for the E-van and conventional van with a driver. The following average local or 7 

service area speeds 𝑣𝑙  are assumed: SADR: 2 km/h, Nuro and Udelv 10 km/h, and mothership 8 

or E-van 20 km/h. For the long-haul segment connecting the depot and the service area an 9 

average speed of 𝑣 = 40 km/h is assumed.  10 

 11 
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7.0 ENERGY CONSUMPTION RESULTS  1 

There are large differences among SADRs, RADRs, drones and EV/conventional vans in terms 2 

of capabilities. Hence, for a few combinations of parameters some vehicles cannot be feasibly 3 

deployed due to range, capacity, or time constraints. When it is not feasible to deploy a vehicle 4 

a table cell is filled out with “NA” which stands for “Not Available”. It should be noted that 5 

continuous approximations work best when the number of customers per vehicle is four or 6 

higher (Daganzo, 1984). In the scenarios presented only the SADR may serve less than four 7 

customers per vehicle and when this is the case the value has an accompanying asterisk and 8 

note in the corresponding table. However, it is important to point out that when this is the case 9 

the SADR is already not the most efficient vehicle and the value in the table is slightly 10 

underestimating the energy consumed per customer and the general trends and insights are not 11 

affected. 12 

 13 

7.1.1 One vehicle efficiency 14 

 15 

The first set of results study the efficiency of each vehicle varying key parameters such as 16 

delivery area size, distance to depot, and delivery time window. One vehicle of each type is 17 

deployed and energy consumption efficiencies are compared across vehicles. The baseline 18 

scenario assumes a service area 𝑎 = 1 km2, a depot at the center of the service area (𝑑 = 0), 19 

and a delivery time window 𝑇 = 8 hours. The number of customers is estimated utilizing 20 

equation (3).  21 

 22 

7.1.2 Service Area (SA) 23 

 24 

Table 10 reports the results in terms of energy consumption per customer served as service area 25 

increases from  𝑎 = 1 km2 to 𝑎 = 30 km2. It is assumed that the depot is at the center of the SA 26 

(𝑑 = 0) and service time is 𝑇 = 8 hours.   A different color and bold are utilized to pinpoint the 27 

lowest value per row. The SADR is most energy efficient option for smaller service areas 28 

because a SADR can serve multiple customers (up to six) and have a low energy consumption 29 

per unit distance. The drone becomes the most energy efficient for large service areas (i.e. low-30 

density scenarios) where the SADR serves less than six customers per vehicle.  31 

 32 

Table 10  Impact of 𝒂 on Energy Consumption per Customer (wh/customer) 33 

Service 

Area 𝑎 

(in km2)  

Vehicle Type  

 SADR NURO  Udelv E-van Drone 

1 10 23 22 16 16 

10 38 82 79 56 51 

20 *76 168 120 84 73 

30 *131 247 155 106 89 

* Three or less customers per SADR 34 

 35 

 36 
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7.1.3 Depot - Service Area Distance 1 

 2 

Table 11 reports the results in terms of energy consumption per customer served as depot-SA 3 

distance increases from 𝑑 = 0 km to 𝑑 = 10 kms. It is assumed that the service area is constant 4 

and equal to 𝑎 = 1 km2 and service time is 𝑇 = 8 hours.  The E-van is the most efficient vehicle 5 

when the depot is not at the center of the service area. Since SADRs are severely range 6 

constrained they must be complemented by a mothership even for relatively low 𝑑  values. 7 

Hence, the SADR is less efficient than all the other ground delivery vehicles when a mothership 8 

must be utilized (even assuming an electric powered mothership).   9 

 10 

Table 11  Impact of 𝒅 on Energy Consumption per Customer (wh/customer) 11 

Distance 

Depot – SA 

𝑑    (in kms) 

Vehicle Type  

SADR+

MS* 

NURO  Udelv E-van Drone 

0.0 3 23 22 16 16 

2.5 72 42 36 24 124 

5.0 117 61 51 31 232 

7.5 161 NA 66 39 340 

10.0 206 NA 81 47 448 

* Mothership not utilized when 𝑑 = 0.0 12 

 13 

7.1.4 Delivery Time Duration 14 

 15 

Table 12 reports the results in terms of energy consumption per customer served as delivery 16 

time duration decreases from 𝑇 = 8 hours to 𝑇 = 1/2 hour. It is assumed that the service area is 17 

constant and equal to 𝑎 = 1 km2 and distance 𝑑 = 0 km.  A different pattern emerges from 18 

previous results. The SADR is the most efficient vehicle until the duration of the delivery time 19 

window is 𝑇 = 2 hours. For smaller values of  𝑇  the SADR is too slow to feasibly deliver in a 20 

limited time frame. Given the low average travel speed of SADRs, 2 km/h in sidewalks, it is 21 

not possible to deliver to customers in a ½ time frame taking into account travel time and service 22 

time. The other ground vehicles also see a reduction of efficiency as the delivery duration 23 

decreases since it reduces the number of feasible deliveries according to equation (3). The drone 24 

becomes most efficient when delivery durations are short and fewer customers can be grouped 25 

in the route of a ground vehicle.    26 

 27 

Table 12 Impact of 𝑻 on Energy Consumption per Customer   28 

Time to 

deliver 𝑇 (in 

hours) 

Vehicle Type  

SADR  NURO  Udelv E-van Drone 

8 10 23 22 16 16 

4 10 23 32 24 16 

2 10 34 47 34 16 

1 *17 51 71 50 16 

0.5 NA 78 109 75 16 

* Three or less customers per SADR 29 
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 1 

 2 

7.1.5 Fleet Efficiency to Serve  𝒏 Customers 3 

 4 

The second set of results study the efficiency a fleet of vehicles that must service 𝑛 customers.  5 

More than one vehicle of each type may be deployed to meet capacity, time, or range 6 

constraints.   The baseline scenario assumes a service area 𝑎 = 1 km2, a depot service area 7 

distance  𝑑 = 2.5 kms, and a delivery time window 𝑇 = 8 hours.  8 

 9 

Table 13 reports the results in terms of energy consumption per customer served as the number 10 

of customers served increases from 𝑛 = 25 to 𝑛 = 200. More than one vehicle of each type may 11 

be deployed to satisfy the range, capacity, or time constraints. The energy efficiency of all the 12 

ground vehicles increases when the number of deliveries or the delivery density increases as 13 

routes become more efficient by including more customers per vehicle. However, efficiency is 14 

reduced when more vehicles are required. For 𝑛 = 25 to 𝑛 = 100 NURO and Udelv are most 15 

efficient but the electric van is the most efficient vehicle for 𝑛 = 200.  16 

 17 

Table 13  Impact of 𝒏 on Energy Consumption per Customer   18 

 19 

Customers 

Served (𝑛) 

Vehicle Type  

SADR+

MS  

NURO  Udelv E-van Drone 

25 127 55 76 81 124 

50 114 47 46 49 124 

100 84 34 29 30 124 

200 67 31 23 19 124 

  20 
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8.0 DISTANCE AND EMISSIONS RESULTS  1 

Changes in commercial vehicle on-road distance traveled are important to analyze 2 

autonomous delivery vehicles potential safety impacts and congestion relief. This section 3 

delves into topics related to drone competitive advantage in terms of delivery distance 4 

traveled and carbon emissions.  5 

8.1 DISTANCE TRAVELED 6 

Table 14 shows the distance traveled by the different vehicles per customer served as the 7 

number of customers served increases from 𝑛 = 25 to 𝑛 = 200. The baseline scenario assumes 8 

area size 𝑎 = 1 km2, distance 𝑑 = 2.5 km, and 𝑇 = 8 hours. 9 

 10 

When comparing values, it is important to highlight that drones do not share the roads used by 11 

all the other ground vehicles. However, even for relatively short distances between the depot 12 

and the service area, drones travel a significantly longer distance and this is related to the 13 

inefficiency of their routes that only accommodate one customer per round trip from the depot.  14 

 15 

SADRs travel on the sidewalk and the mothership travels on the road, hence, the distance for 16 

these two complementary vehicles are disaggregated. It was shown that SADRs can be energy 17 

efficient when delivering from the depot and without a mothership. Table 7 shows that when a 18 

mothership is utilized to carry the SADRs there could be an increase of both on-road and 19 

sidewalk travel when comparing against the other ground vehicles. There is a clear increase of 20 

MS on-road vehicle travel for 𝑛 ≥ 50.  RADRs and the E-van have the same on-road distance 21 

traveled as long as the necessary fleets have the same size. RADRs could be more energy 22 

efficient for lower values of 𝑛 but generate more miles and potentially more congestion when 23 

more vehicles are needed. Regarding safety and crashes, the NURO is smaller and designed to 24 

collapse and reduce damage in case of crashes (Verger, 2018). Future research efforts should 25 

analyze in detail potential externalities and conflicts with pedestrians caused by SADR travel 26 

on sidewalks.    27 

 28 

Potential congestion impacts of RADRs are also a function of their size, the uDelv is similar in 29 

size to the E-van; however, the NURO is considerably smaller, roughly ½ the size of a small 30 

E-van and likely to contribute less to congestion on a per unit distance traveled basis. Regarding 31 

motherships, it is important to highlight that the Mercedes Benz Sprinter van, which is used as 32 

a prototype to carry the eight SADRs, is 70% and 130% longer than the Udelv and NURO 33 

vehicles respectively. Regarding vehicle width, which is important for parking in congested 34 

areas, two and ½ NUROs can potentially occupy the same parking space utilized by one 35 

mothership van. Considering that the mothership van may require additional space to unload 36 

and load the SADRs, SADRs may not be efficient in terms of curb utilization if a mothership 37 

is required.  38 

 39 

 40 
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Table 14  Per Customer Distance Traveled Varying 𝒏 

Customer

s Served 

(𝑛)  

Vehicle Type  

SADR* MS NURO  Udelv E-van Drone** 

25 0.19  0.29 0.39 0.39  0.39 

              

0.39  

5.75  

50 0.14  0.26 0.34  0.24  0.24        

0.24  

5.75  

100 0.10  0.19 0.25  0.15  0.15 

              

0.15  

5.75  

200 0.07  0.15 0.22 

                

0.22  

0.12  0.09              

0.09  

5.75  

* sidewalk travel, ** air travel 

 

8.2 CARBON EMISSIONS  

Relative emissions by vehicle type can be easily estimated by taking into account that each unit of 

energy used by an ICE diesel vehicle generates 22.5 more CO2 equivalent emissions than the 

emissions generated by using a similar unit of energy sourced from the electric grid in Oregon 

(Figliozzi, 2017). The 22.5 value may change with the electricity generation profile of each city or 

country, i.e. it is a function of the percentage of clean or dirty sources used, and the previous value 

is applicable to the state of Oregon in the US. The 22.5 value used in this research accounts for 

diesel vehicle emissions including well-to-tank (WTT) and tank-to-wheel (TTW) emissions.  

 

The E-van consumes almost five times less energy per unit distance than the conventional ICE van 

(205 wh/km vs. 1016 wh/km) and including emissions then the E-van generates approximately 

112 times less CO2 emissions per unit distance traveled. Table 15 shows the carbon emissions of 

the electric vehicles as a percentage of the carbon emissions generated by the ICE Dodge RAM. It 

is clear that, regardless of the autonomous vehicle type utilized, the reduction in carbon emissions 

is always likely to be highly significant. On average, any autonomous vehicle emits less than 2% 

of the emissions emitted by utilizing an ICE diesel van. But as shown by the 0.9% emissions of 

the E-van, the main cause of this impressive reduction in emissions is the electrification of the 

engines. 

 

Table 15 Per Customer CO2 Emissions Varying 𝒏 – baseline ICE Van 

Customers 

Served (𝑛) 

Vehicle Type  

SADR+

MS  

NURO  Udelv E-van Drone 

25 1.4% 0.6% 0.8% 0.9% 1.4% 

50 2.1% 0.9% 0.8% 0.9% 2.3% 

100 2.5% 1.0% 0.8% 0.9% 3.7% 

200 3.1% 1.4% 1.1% 0.9% 5.8% 

 

The numbers in this table will be affected by the energy sources utilized to generate electricity. 

For example, in the US the national average CO2 rate is 947.2 lbs/MWh but there is a high degree 

of variability across regions. The lowest rate is found in New York and upstate region (NYUP) 
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with an average CO2 rate of 253.1 lbs/MWh and the highest rate in the Mid-west region (MROE) 

with an average CO2 rate of 1,678 lbs/MWh. In the NYUP region the main sources of electricity 

generation are hydro and nuclear (account for 66% of the total) whereas in the MROE region the 

main energy source is coal that accounts for 64% of the total generation (EPA, 2020). In the Pacific 

Norwest region, where Oregon is located, the average CO2 rate of 639 lbs/MWh (EPA, 2020). 

Even assuming the dirtiest electricity generation profile in the US, CO2 emissions from a 

conventional van are several times higher than operational emissions from electric vehicles.  

8.3 GROCERY STORE DELIVERY VS CUSTOMER DRIVING 

Since electrification is a key factor to reduce carbon emissions, a question arises regarding the 

benefit of autonomous delivery vehicles when compared to the emissions of an electric and/or ICE 

passenger car. The issue of traffic generated when delivering from the supermarket or driving from 

home has been studied in the past (Cairns, 2005;  Halldórsson et al., 2010) as well as the emissions 

reductions (Wygonik and Goodchild, 2012). It was concluded that with enough customers per 

route, supermarket delivery is more efficient than individuals driving to the store. However, 

previous research efforts did not include several key factors that affect the relative efficiency of 

store delivery vs customer driving to a store: (a) the growth of passenger EVs, (b) logistics sprawl, 

and (c) the number of items purchased and delivered.  

 

In recent years there has been a growth of passenger electric vehicles in the US, mainly driven by 

the advent of the Tesla Model 3 (TM3). According to the EPA the energy efficiency of the TM3 

is 28 kwh/100 miles or 174 wh per km (EPA, 2018); the TM3 is one of the most energy efficient 

passenger vehicles in the market. The Tesla Model 3 is now the most popular EV in the US and 

the third best-selling car in the state of California where the TM3 accounts for almost 60% of EV 

sales (Dow, 2020).  

 

Urban logistics sprawl refers to increases in depot-service area distances, i.e. the relocation of 

depots away from customer locations. This phenomenon has been observed in many urban areas 

in different continents. Furthermore, the advent of e-grocery home delivery may increase distance 

delivery distances because delivery areas are not necessarily distributed around traditional 

industrial or wholesale land use areas (Keeling and Figliozzi, 2019). In this paper, higher levels of 

logistics sprawl are represented by higher values of  𝑑, the depot-service area distance. Next 

subsections analyze driving to store efficiency of ICE and EV vehicles with different levels of 

customer delivery density and logistics sprawl. It is assumed that a store is at the center of a circular 

delivery region of 1 km2 and that customers can be served by an autonomous vehicle, E-van, 

conventional van, or drive to the store. Customers are distributed uniformly across the circular 

region. The delivery depot can be located at the store (𝑑 = 0) or at a distance 𝑑 = 2.5 or  𝑑 = 10 

kms to simulate logistics sprawl.  

 

The relative efficiency of driving to the store vs store delivery is a function of the number of 

products purchased at the store or delivered to each customer. Previous studies in multiple 

countries have shown that the mean number of products purchased in grocery trips is 

approximately nine with a long right tail that reaches up to 60 products (Sorensen et al., 2017). 

The average number of items in an online grocery basket is likely to have a similar value (Suel et 

al., 2015) but the number of products purchased online is influenced by the structure of shipping 

fees. When free shipping is available after reaching a minimum shopping cart value, customers 
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tend to take advantage of this pricing feature which increases average order size. Subscription 

services like Amazon prime incentivize more frequent and smaller orders since shipping is free 

(Belavine et al., 2017). To facilitate comparisons between customer store shopping and store 

delivery, the ratio 𝜀  between store order size and delivery order size for carbon emissions 

breakeven condition is estimated.   

 

8.3.1 Breakeven Results for ICE Vehicles   

 

The 2016 average fuel efficiency of vehicles in the US was approximately 24.7 miles per gallon 

according to an EPA report (2017). Utilizing this ICE efficiency, the numbers in  Table 16 can be 

interpreted as follows: to generate the same level of carbon emissions the store order size of a 

customer driving an ICE is 4,064  (𝜀 = 4064) times larger than the order size delivered by a SADR 

when the depot is at the store (𝑑 =  0) and the SADR fleet delivers to 𝑛 =  25  customers.  

 

Given that the mean number of products purchased in grocery trips is approximately nine with a 

right tail of up to 60 products (Sorensen et al., 2017), deliveries utilizing any autonomous vehicle 

generate less emissions even with a long depot-delivery area distance. On the other hand, 

delivering with a conventional van could be more environmentally friendly only when the depot 

is at or close to the store and many customers are served (large 𝑛). Bold and a different color are 

utilized to highlight when delivering from the store is more efficient assuming an average order 

size of nine products.  

 

Table 16 ICE Order Size Ratio 𝜺 for CO2 Breakeven Condition 

Distance 

Depot – SA  

(in kms) 

Customers 

Served (n)  

Vehicle Type  

SADR 

+MS*  
NURO  Udelv E-van Drone 

Conv. 

Van 

𝑑 =  0 

25 4,064 

4,064 

718 517 489 1,197 4.4 

50 5,748 1,016 731 692 1,197 6.2 

100 8,129 1,436 1,034 978 1,197 8.8 

200 11,496 2,031 1,462 1,383 1,197 12.4 

𝑑 =  2.5 

25 153 354 255 241 157 2.2 

50 171 413 423 400 157 3.6 

100 233 564 682 645 157 5.8 

200 290 637 846 1,014 157 9.1 

𝑑 =  10 

25 51 140 101 95 43 0.9 

50 53 149 187 177 43 1.6 

100 71 200 338 319 43 2.9 

200 86 208 373 563 43 5.0 

* MS required when 𝑑 >  0 

Bold when delivering from the store is more efficient 
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8.3.2 Breakeven Results for Tesla 3 EV   

 

Table 17 shows the breakeven order size 𝜀 when a customer drives to the store utilizing a Tesla 

model 3. Given that the mean number of products purchased in grocery trips is approximately nine 

with a right tail of up to 60 products (Sorensen et al., 2017), deliveries utilizing a conventional van 

are no longer more environmentally friendly.  

 

Even electric autonomous vehicles may not be more environmentally friendly than a TM3 when 

there is logistics sprawl (𝑑 > 0.0). With free shipping and small order sizes, customers ordering 1 

or 2 items per delivery, driving a TM3 to the store is on average more environmentally friendly 

than home delivery.  Hence, it is not self-evident anymore that store delivery is more 

environmentally friendly than driving to the store unless all the key factors are stated: delivery 

vehicle type, customer vehicle type, depot-service area distance, in-store order size, and delivery 

order size.  Bold and a different color are utilized to highlight when delivering from the store is 

more efficient assuming an average order size of nine products. 

 

Table 17 Tesla 3S Ratio Order Size Ratio 𝜺 for CO2 Breakeven Condition 

Distance 

Depot – SA  

(in kms) 

Customers 

Served (n)  

Vehicle Type  

 
SADR 

+MS* 
NURO  Udelv E-van Drone 

Conv. 

Van 

𝑑 =  0 

25 35 6 4 4 10 0.04 

50 49 9 6 6 10 0.05 

100 69 12 9 8 10 0.07 

200 98 17 12 12 10 0.11 

𝑑 =  2.5 

25 1.3 3.0 2.2 2.1 1.3 0.02 

50 1.5 3.5 3.6 3.4 1.3 0.03 

100 2.0 4.8 5.8 5.5 1.3 0.05 

200 2.5 5.4 7.2 8.7 1.3 0.08 

𝑑 =  10 

25 0.4 1.2 0.9 0.8 0.4 0.01 

50 0.4 1.3 1.6 1.5 0.4 0.01 

100 0.6 1.7 2.9 2.7 0.4 0.02 

200 0.7 1.8 3.2 4.8 0.4 0.04 

* MS required when 𝑑 >  0 

Bold when delivering from the store is more efficient 
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9.0 CONCLUSIONS 

Growing e-commerce volumes and consumer expectations of free and faster shipping are 

pushing the adoption of new delivery vehicles. For the delivery of time-sensitive supplies, drones 

may provide the means to bypass many obstacles experienced by ground transportation vehicles. 

However, drones are subject to their own set of constraints that limit the likelihood of successful 

deliveries.  

 

The number of drones needed is highly dependent on charge times, use of battery swapping, and 

population in the service area. Additional consideration should also be given to potential 

mechanical failures and maintenance schedules. It is important to note that failure due to extreme 

weather conditions cannot be addressed by simply having more available drones. Extreme 

weather conditions, which will result in a failed delivery for one drone, will result in a failed 

delivery for any other drone because drones cannot operate under extreme weather conditions.  

Wind is a key constraint for drone deliveries. Successful drone deliveries are highly influenced 

by wind speeds, wind direction, and precipitation rates; however, the ambient temperature may 

mostly be ignored for short and strict delivery times limits.   

 

Furthermore, there is an access and equity question associated with a drone’s ability to deliver to 

some areas. For example, airports are often restricted flight zones that allow for no drone 

operations. Such areas are also areas with higher proportions of lower-income communities. 

Future research could examine where a delivery system could be employed and what ground 

delivery systems are required locally to adjust for access differences.  

 

In terms of energy and emissions efficiency there is no vehicle type that dominates across the 

board. Drones are more efficient in time constrained and low-density delivery scenarios. Road 

autonomous delivery robots (RADRs) are more efficient than E-vans when delivering to relatively 

low number of customers.  New air and ground autonomous vehicle types may reduce carbon 

emissions significantly but they may not necessarily reduce on-road travel. For some autonomous 

vehicles the reduction of on-road travel is also accompanied by additional travel on sidewalks 

(SADRs) or air travel (drones).   
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11.0 APPENDIX   

 

 

The time constraint is represented by the following equation:  
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Squaring both sides  
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Introducing the following notation to simplify notation 
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Replacing  
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Solving the second order equation 
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Only the negative root is feasible 
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