EOC 4422 OCEAN WAVE MECHANICS

ABET Course Syllabus

1. Course number and name: EOC 4422 Ocean Wave Mechanics

2. Credits and contact hours: 3 credits / Two 80 minute lectures each week

3. **Instructor's or course coordinator's name:** Dr. Siddhartha Verma

4. Text book, title, author, and year:

Water Wave Mechanics for Engineers and Scientists, by R. G. Dean and R. A. Dalrymple, World Scientific Publications, 1991

5. Specific course information:

- (a) Brief description of the content of the course (catalog description): The course deals with small amplitude wave theory, finite amplitude waves, wave generation, wave forecasting, wave measurements. Wave force on fixed structures, floating bodies and moored bodies.
- (b) Prerequisite: EOC 3123 Ocean Engineering Fluid Mechanics (with a grade of C or above)
- (c) Prerequisite or Co-requisite: EGN 4323 Vibration Synthesis and Analysis (with a grade of C or above)
- (d) Indicate whether a required, elective, or selected elective course in the program: Required

6. Specific goals for the course:

- (a) Specific outcomes of instruction (course specific objective): The objective of the course is to provide the students with a basic and applied knowledge of water wave mechanics as required in the design of ocean structures, marine vehicles and harbors; in the protection of shores; and for the prediction of sea states.
- (b) Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course. The learning outcomes of the course (and related ABET Criterion 3) outcomes are:
 - 1. An ability to apply the knowledge of mathematics for formulation and analysis of ocean wave and boundary-value fluids problems. (1)
 - 2. A thorough knowledge of the basic properties of ocean waves in deep and coastal waters, and mechanisms of wave generation. (1)
 - 3. An ability to determine wave forces on fixed and floating structures. (1,6)
 - 4. A basic knowledge of the relation between atmosphere and sea states, and wave modeling and spectra. (1)
 - 5. An ability to make measurements of surface waves and analyze experimental data. (6)
 - 6. An ability to work on team projects. (5)

7. Brief list of topics to be covered:

1. Potential flow, Laplace's equation, boundary value problems.

- 2. Small amplitude waves, linearized boundary conditions.
- 3. Periodic, progressive and standing wave solutions.
- 4. Wave kinematics, dispersion relation, shallow- and deep-water waves.
- 5. Phase and group velocity, energy propagation, capillary waves.
- 6. Wave and current interaction, shoaling waves and refraction.
- 7. Long wave theory, tides in channels, storm surge.
- 8. Wave radiation, wave-maker theory.
- 9. Wave forces, Froude-Krylov and Morison-equation methods.
- 10. Wind generated waves, Sea spectra (time permitting)